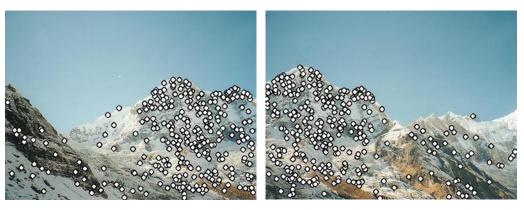
Corner detection continued

The correspondence problem

A general pipeline for correspondence

- 1. If sparse correspondences are enough, choose points for which we will search for correspondences (feature points)
- 2. For each point (or every pixel if dense correspondence), describe point using a *feature descriptor*
- 3. Find best matching descriptors across two images (*feature matching*)
- 4. Use feature matches to perform downstream task, e.g., pose estimation

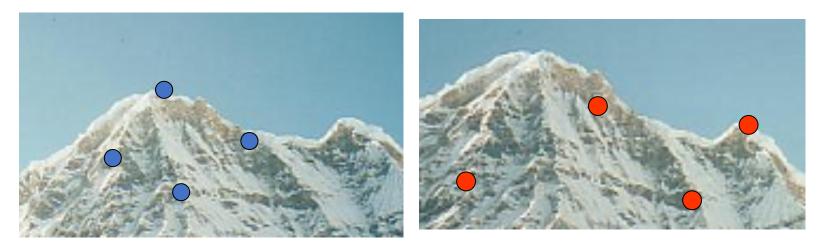
Characteristics of good feature points



- Repeatability / invariance
 - The same feature point can be found in several images despite geometric and photometric transformations
- Saliency / distinctiveness
 - Each feature point is distinctive
 - · Fewer "false" matches

Goal: repeatability

• We want to detect (at least some of) the same points in both images.



No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

Repeatability / invariance

- The feature detector should "fire" at consistent places in spite of rotation, translation etc.
- Changes to the underlying image (rotations, translations, deformations) shouldn't change where the detector "fires" : invariance

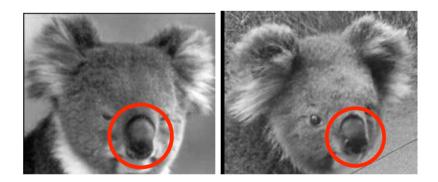


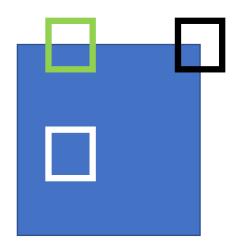
Image credit : L. Fei-Fei

Goal: distinctiveness

- The feature point should be distinctive enough that it is easy to match
 - Should *at least* be distinctive from other patches nearby

Distinctiveness

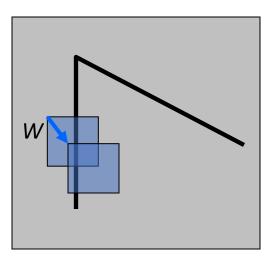
• Main idea: Translating window should cause large differences in patch appearance



Harris corner detection: the math

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

• We want E(u,v) to be as high as possible for all u, v!

Small motion assumption

Taylor Series expansion of *I*:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

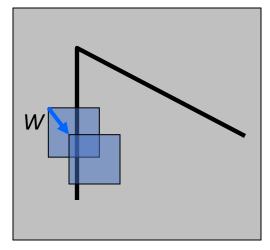
$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Corner detection: the math

Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:



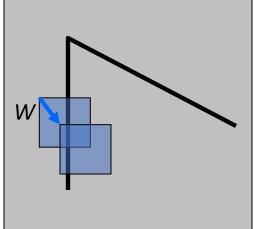
$$E(u, v) = \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x+u, y+v) - I(x,y)]^2$$

$$\approx \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x,y) + I_x u + I_y v - I(x,y)]^2$$

Corner detection: the math

Consider shifting the window W by (u,v)

• define an "error" *E(u,v)*:



$$E(u,v) \approx \sum_{(x,y)\in W} [I_x u + I_y v]^2$$
$$\approx Au^2 + 2Buv + Cv^2$$
$$A = \sum_{(x,y)\in W} I_x^2 \quad B = \sum_{(x,y)\in W} I_x I_y \quad C = \sum_{(x,y)\in W} I_y^2$$

• Thus, *E*(*u*,*v*) is locally approximated as a quadratic error function

Interpreting the second moment matrix

Recall that we want E(u,v) to be as large as possible for all u,v

What does this mean in terms of M?

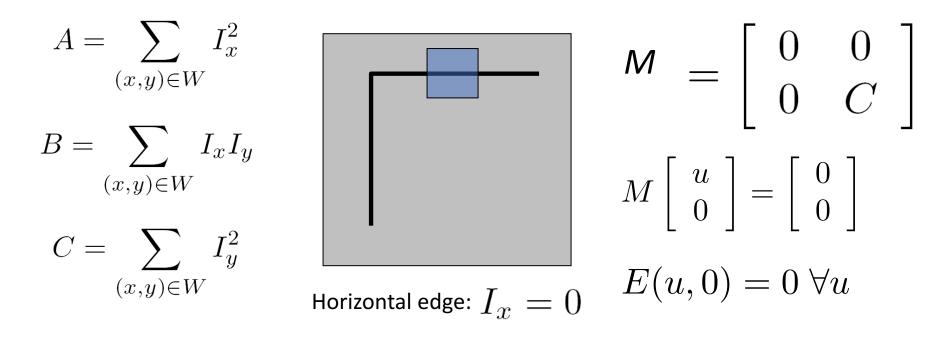
$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

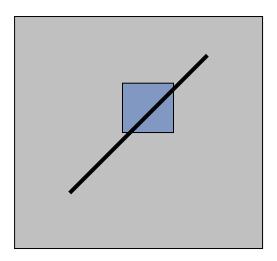
Second moment matrix

$$\begin{split} E(u,v) &\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ A &= \sum_{(x,y) \in W} I_x^2 & M \\ B &= \sum_{(x,y) \in W} I_x I_y \\ C &= \sum_{(x,y) \in W} I_y^2 & I_y^2 & M \\ Vertical edge: I_y &= 0 \\ E(0,v) &= 0 \quad \forall v \end{split}$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$



What about edges in arbitrary orientation?



$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

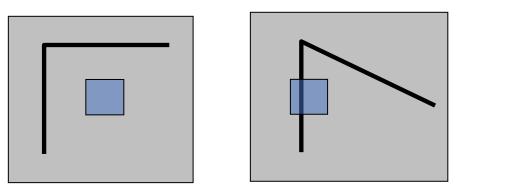
$$M\begin{bmatrix} u\\v \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \Rightarrow E(u,v) = 0$$
$$M\begin{bmatrix} u\\v \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \Leftrightarrow E(u,v) = 0$$

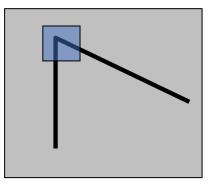
Solutions to Mx = 0 are directions for which E is 0: window can slide in this direction without changing appearance

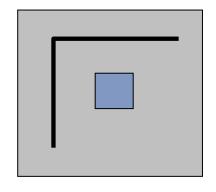
$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

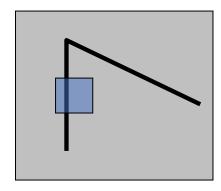
Solutions to Mx = 0 are directions for which E is 0: window can slide in this direction without changing appearance

For corners, we want no such directions to exist









 $\overset{_{-1,\underline{0}\underline{0},\underline{7}5}}{\underset{\underline{0},\underline{2}5,\underline{6},\underline{2}5,\underline{6},\underline{7}5}{\overset{_{-}0,\underline{2}5}{\overset{_{-}0,\underline{2}5}{\overset{_{-}0,\underline{7}5}{\overset_{-}0,\underline{7}5}{\overset{_{-}0,\underline{7}5}{\overset{_{-}0,\underline{7}5}{\overset_{-}0,\underline{7}5}{\overset{_{-}0,\underline{7}5}{\overset_{-}0,\underline{7}5}$

E(u,v)

0.89

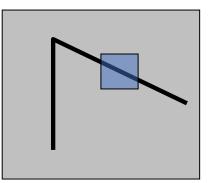
0.66

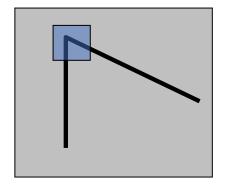
- 0.8

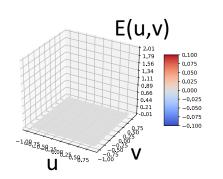
- 0.6

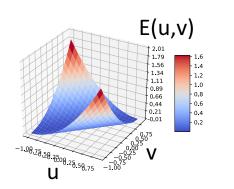
- 0.4

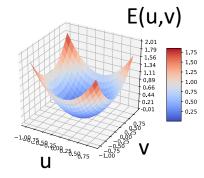
- 0.2







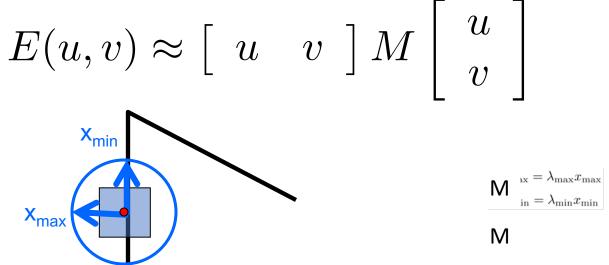




Eigenvalues and eigenvectors of M

- $Mx = 0 \Rightarrow Mx = \lambda x$: x is an eigenvector of M with eigenvalue 0
- M is 2 x 2, so it has 2 eigenvalues $(\lambda_{max}, \lambda_{min})$ with eigenvectors (x_{max}, x_{min})
- $E(x_{max}) = x_{max}^T M x_{max} = \lambda_{max} ||x_{max}||^2 = \lambda_{max}$ (eigenvectors have unit norm)
- $E(x_{min}) = x_{min}^T M x_{min} = \lambda_{min} ||x_{min}||^2 = \lambda_{min}$

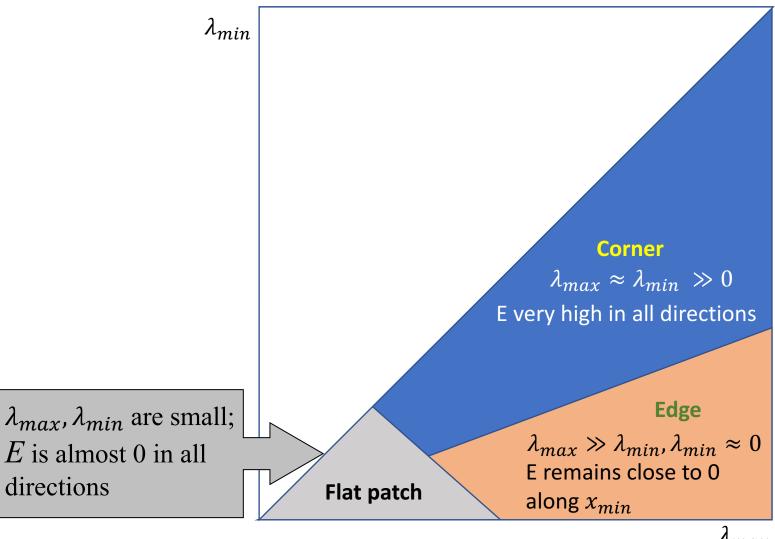
Eigenvalues and eigenvectors of M



Eigenvalues and eigenvectors of M

- Define shift directions with the smallest and largest change in error
- x_{max} = direction of largest increase in *E*
- λ_{max} = amount of increase in direction x_{max}
- x_{min} = direction of smallest increase in *E*
- λ_{min} = amount of increase in direction x_{min}

Interpreting the eigenvalues



 λ_{max}

Eigenvalues and eigenvectors of М Г ٦

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$x_{\max} = \lambda_{\max} x_{\max}$$

$$M x_{\min} = \lambda_{\min} x_{\min}$$

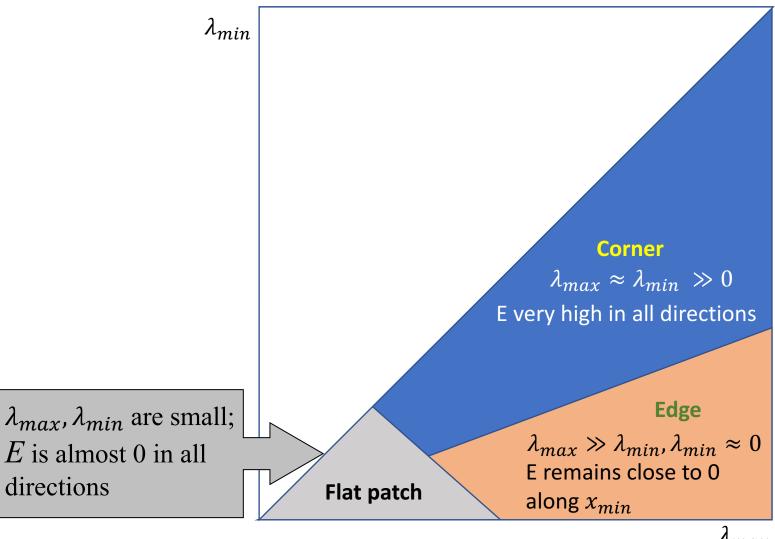
Eigenvalues and eigenvectors of M

Define shift directions with the smallest and largest change in error

 $\lambda_{\min} x_{\min}$

- x_{max} = direction of largest increase in E
- λ_{max} = amount of increase in direction x_{max}
- x_{min} = direction of smallest increase in E
- λ_{\min} = amount of increase in direction x_{\min}

Interpreting the eigenvalues



 λ_{max}

Corner detection: the math

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

• Need a feature scoring function

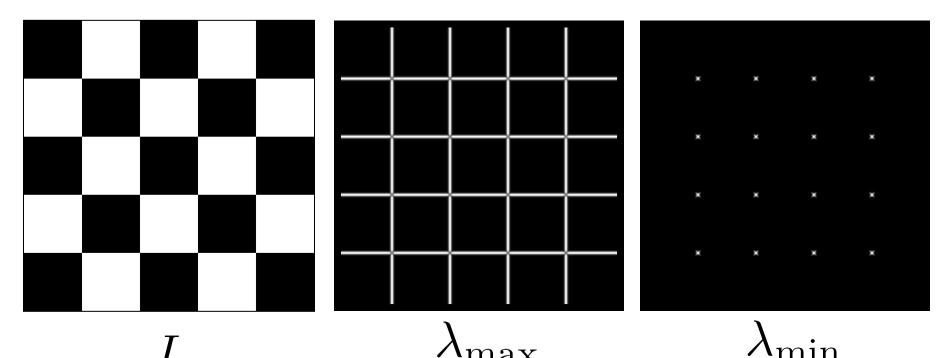
Corner detection: the math

How are λ_{max} , x_{max} , λ_{min} , and x_{min} relevant for feature detection?

• Need a feature scoring function

Want E(u,v) to be large for small shifts in all directions

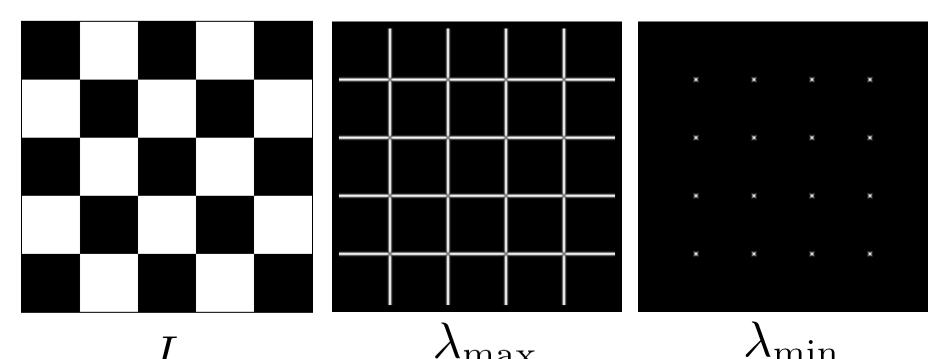
- the minimum of E(u,v) should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue (λ_{min}) of M



Corner detection summary

Here's what you do

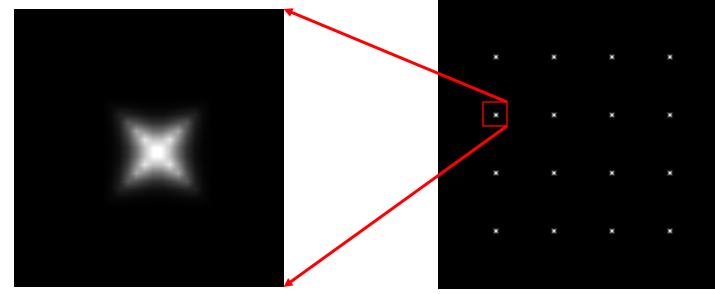
- Compute the gradient at each point in the image
- Create the *M* matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features



Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the *H* matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features

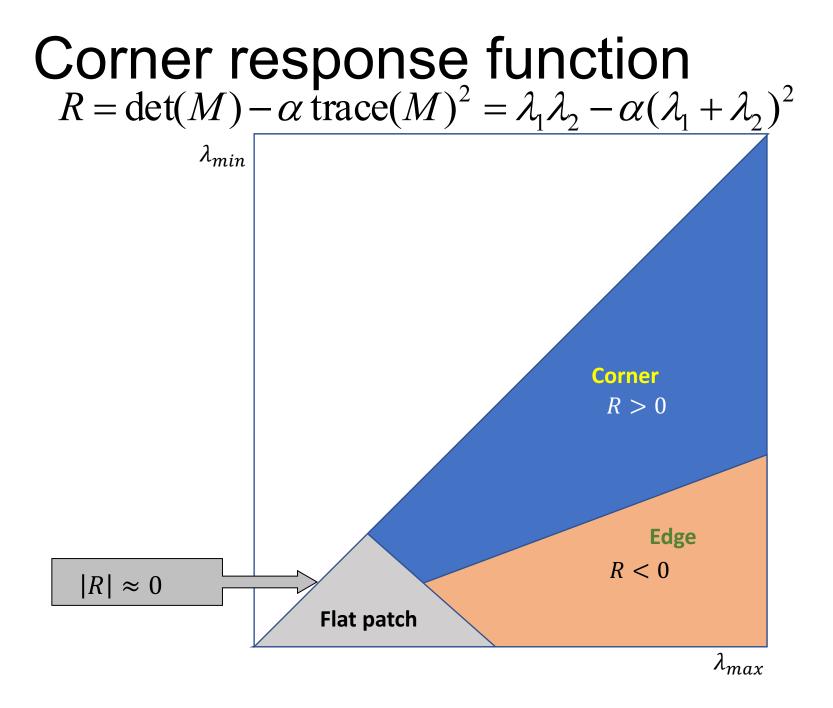


The Harris operator

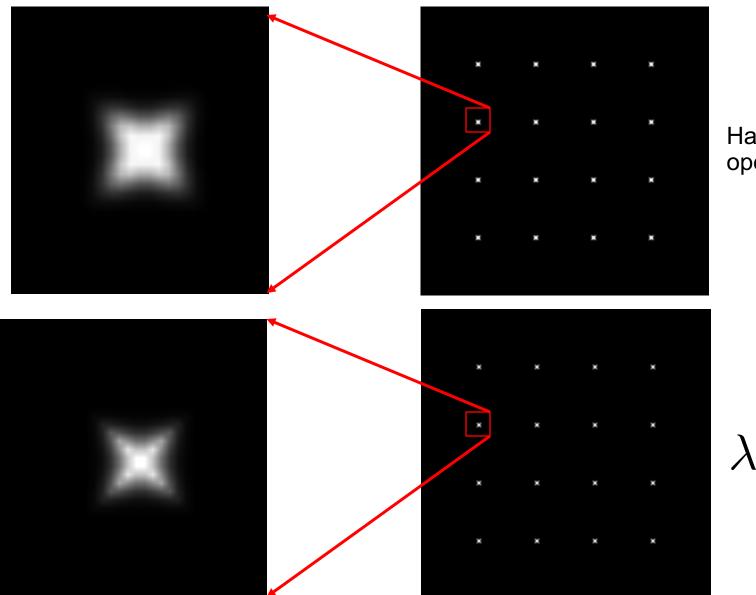
 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The *trace* is the sum of the diagonals, i.e., *trace(H)* = $h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
 - Actually the Noble variant of the Harris Corner Detector
- Lots of other detectors, this is one of the most popular



The Harris operator



Harris operator

 λ_{\min}

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
1. Image derivatives (optionally, blur first)
$$(1 + \lambda_{1}) = 0$$

$$det M = \lambda_{1}\lambda_{2}$$

$$trace M = \lambda_{1} + \lambda_{2}$$
3. Gaussian filter $g(\sigma_{I})$
4. Cornerness function – both eigenvalues are strong

har

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Weighting the derivatives

 In practice, using a simple window W doesn't work too well

$$H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

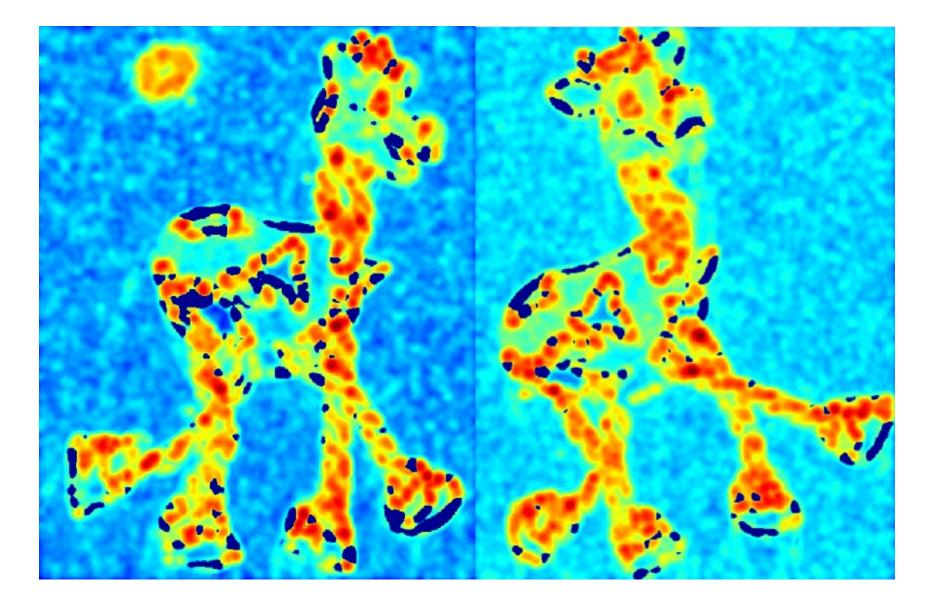
 Instead, we'll weight each derivative value based on its distance from the center pixel

$$H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

 $w_{x,y}$

Harris detector example

f value (red high, blue low)



Threshold (f > value)

Find local maxima of f

. .

. . . .

Harris features (in red)

