
Corner	detection	
continued



The	correspondence	problem



A	general	pipeline	for	
correspondence
1. If	sparse	correspondences	are	enough,	choose	

points	for	which	we	will	search	for	
correspondences	(feature	points)

2. For	each	point	(or	every	pixel	if	dense	
correspondence),	describe	point	using	a	feature	
descriptor

3. Find	best	matching	descriptors	across	two	images	
(feature	matching)

4. Use	feature	matches	to	perform	downstream	
task,	e.g.,	pose	estimation	



Characteristics of good feature 
points

• Repeatability / invariance
• The same feature point can be found in several images despite 

geometric and photometric transformations 

• Saliency / distinctiveness
• Each feature point is distinctive
• Fewer ”false” matches



Goal: repeatability
• We	want	to	detect	(at	least	some	of)	the	same	points	in	both	images.

• Yet	we	have	to	be	able	to	run	the	detection	procedure	independently per	
image.

No chance to find true matches!

Kristen Grauman



Repeatability	/	invariance

• The	feature	detector	should	“fire”	at	consistent	
places	in	spite	of	rotation,	translation	etc.

• Changes	to	the	underlying	image	(rotations,	
translations,	deformations)	shouldn’t	change	where	
the	detector	“fires”	:	invariance

Image	credit	:	L.	Fei-
Fei



Goal:	distinctiveness

• The	feature	point	should	be	distinctive	enough	that	
it	is	easy	to	match

• Should	at	least	be	distinctive	from	other	patches	nearby

????



Distinctiveness

• Main	idea:	Translating	window	should	cause	large	
differences	in	patch	appearance



Consider	shifting	the	window	W by	(u,v)
• how	do	the	pixels	in	W change?
• compare	each	pixel	before	and	after	by
summing	up	the	squared	differences	(SSD)

• this	defines	an	SSD	“error”	E(u,v):

• We	want	E(u,v)	to	be	as	high	as	possible	
for	all	u,	v!

Harris	corner	detection:		the	math

W



Taylor	Series	expansion	of	I:

If	the	motion	(u,v)	is	small,	then	first	order	approximation	is	good

Plugging	this	into	the	formula	on	the	previous	slide…

Small	motion	assumption



Corner	detection:		the	math

Consider	shifting	the	window	W by	(u,v)
• define	an	SSD	“error”	E(u,v):

W



Corner	detection:		the	math

Consider	shifting	the	window	W by	(u,v)
• define	an	“error”	E(u,v):

W

• Thus,	E(u,v)	is	locally	approximated	as	a	quadratic	error	function



Recall that we want E(u,v) to be as large as 
possible for all u,v

What does this mean in terms of M?

Interpreting the second moment matrix
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Second	moment	matrix



Flat	patch:	
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Vertical	edge:	
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Horizontal	edge:	
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What	about	edges	in	arbitrary	
orientation?
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Solutions	to	Mx =	0	are	directions	for	which	E	
is	0:	window	can	slide	in	this	direction	
without	changing	appearance
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Solutions	to	Mx =	0	are	directions	for	which	E	
is	0:	window	can	slide	in	this	direction	
without	changing	appearance

For	corners,	we	want	no	such	directions	to	
exist
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Eigenvalues	and	eigenvectors	of	
M

• 𝑀𝑥 = 0 ⇒ 𝑀𝑥 = 𝜆𝑥:	x	is	an	eigenvector	of	M	with	
eigenvalue	0

• M	is	2	x	2,	so	it	has	2	eigenvalues	(𝜆()*, 𝜆(,-) with	
eigenvectors	(𝑥()*, 𝑥(,-)

• 𝐸 𝑥()* = 		 𝑥()*1 𝑀𝑥()* = 𝜆()*||𝑥()*||3 = 𝜆()*
(eigenvectors	have	unit	norm)

• 𝐸 𝑥(,- = 𝑥(,-1 𝑀𝑥(,- = 𝜆(,-||𝑥(,-||3 = 𝜆(,-



Eigenvalues	and	eigenvectors	of	
M

Eigenvalues	and	eigenvectors	of	M
• Define	shift	directions	with	the	smallest	and	largest	change	in	error
• xmax =	direction	of	largest increase	in	E
• lmax =	amount	of	increase	in	direction	xmax

• xmin =	direction	of	smallest increase	in	E
• lmin =	amount	of	increase	in	direction	xmin
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𝜆()* ≈ 𝜆(,- 	≫ 0
E	very	high	in	all	directions

Corner

𝜆()* ≫ 𝜆(,-, 𝜆(,- ≈ 0
E	remains	close	to	0	
along	𝑥(,-

Edge𝜆()*, 𝜆(,-	are small;
E is almost 0 in all 
directions Flat	patch

𝜆(,-

𝜆()*

Interpreting the eigenvalues



Eigenvalues	and	eigenvectors	of	
M

Eigenvalues	and	eigenvectors	of	M
• Define	shift	directions	with	the	smallest	and	largest	change	in	error
• xmax =	direction	of	largest increase	in	E
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𝜆()* ≈ 𝜆(,- 	≫ 0
E	very	high	in	all	directions

Corner

𝜆()* ≫ 𝜆(,-, 𝜆(,- ≈ 0
E	remains	close	to	0	
along	𝑥(,-

Edge𝜆()*, 𝜆(,-	are small;
E is almost 0 in all 
directions Flat	patch
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Interpreting the eigenvalues



Corner	detection:		the	math
How	are	lmax, xmax, lmin, and	xmin relevant	for	feature	detection?

• Need	a	feature	scoring	function



Corner	detection:		the	math
How	are	lmax, xmax, lmin, and	xmin relevant	for	feature	detection?

• Need	a	feature	scoring	function
Want	E(u,v)	to	be	large	for	small	shifts	in	all	directions

• the	minimum	of	E(u,v)	should	be	large,	over	all	unit	vectors	[u	v]
• this	minimum	is	given	by	the	smaller	eigenvalue	(lmin)	of	M



Corner	detection	summary
Here’s	what	you	do

• Compute	the	gradient	at	each	point	in	the	image
• Create	the	Mmatrix	from	the	entries	in	the	gradient
• Compute	the	eigenvalues	
• Find	points	with	large	response	(lmin >	threshold)
• Choose	those	points	where	lmin	is	a	local	maximum	as	features



Corner	detection	summary
Here’s	what	you	do

• Compute	the	gradient	at	each	point	in	the	image
• Create	the	Hmatrix	from	the	entries	in	the	gradient
• Compute	the	eigenvalues.	
• Find	points	with	large	response	(lmin >	threshold)
• Choose	those	points	where	lmin	is	a	local	maximum	as	features



The	Harris	operator

lmin	is	a	variant	of	the	“Harris	operator”	for	feature	detection

• The	trace is	the	sum	of	the	diagonals,	i.e.,	trace(H)	=	h11 +	h22
• Very	similar	to	lmin	but	less	expensive	(no	square	root)
• Called	the	“Harris	Corner	Detector”	or	“Harris	Operator”

• Actually	the	Noble	variant	of	the	Harris	Corner	Detector
• Lots	of	other	detectors,	this	is	one	of	the	most	popular
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The	Harris	operator

Harris 
operator



Harris Detector [Harris88]

• Second	moment	matrix
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Weighting	the	derivatives

• In	practice,	using	a	simple	window	W doesn’t	work	
too	well

• Instead,	we’ll	weight each	derivative	value	based	
on	its	distance	from	the	center	pixel



Harris	detector	example



f	value	(red	high,	blue	low)



Threshold	(f	>	value)	



Find	local	maxima	of	f



Harris	features	(in	red)


