Corner detection continued

The correspondence problem

A general pipeline for
correspondence

1. If sparse correspondences are enough, choose points for which we will search for correspondences (feature points)
2. For each point (or every pixel if dense correspondence), describe point using a feature descriptor
3. Find best matching descriptors across two images (feature matching)
4. Use feature matches to perform downstream task, e.g., pose estimation

Characteristics of good feature points

- Repeatability / invariance
- The same feature point can be found in several images despite geometric and photometric transformations
- Saliency / distinctiveness
- Each feature point is distinctive
- Fewer "false" matches

Goal: repeatability

- We want to detect (at least some of) the same points in both images.

No chance to find true matches!

- Yet we have to be able to run the detection procedure independently per image.

Repeatability / invariance

- The feature detector should "fire" at consistent places in spite of rotation, translation etc.
- Changes to the underlying image (rotations, translations, deformations) shouldn't change where the detector "fires" : invariance

Goal: distinctiveness

- The feature point should be distinctive enough that it is easy to match
- Should at least be distinctive from other patches nearby

Distinctiveness

- Main idea: Translating window should cause large differences in patch appearance

Harris corner detection: the math

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" $E(u, v)$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

- We want $\mathrm{E}(\mathrm{u}, \mathrm{v})$ to be as high as possible for all u, v !

Small motion assumption

Taylor Series expansion of I :

$$
I(x+u, y+v)=I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+\text { higher order terms }
$$

If the motion (u, v) is small, then first order approximation is good

$$
\begin{aligned}
I(x+u, y+v) & \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v \\
& \approx I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

shorthand: $I_{x}=\frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Corner detection: the math

Consider shifting the window W by (u, v)

- define an SSD "error" $E(u, v)$:

$$
\begin{aligned}
E(u, v) & =\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I(x, y)+I_{x} u+I_{y} v-I(x, y)\right]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2}
\end{aligned}
$$

Corner detection: the math

Consider shifting the window W by (u, v)

- define an "error" $E(u, v)$:

$$
E(u, v) \approx \sum\left[I_{x} u+I_{y} v\right]^{2}
$$

$$
\begin{aligned}
& (x, y) \in W \\
& \approx A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \quad B=\sum_{(x, y) \in W} I_{x} I_{y} \quad C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

- Thus, $E(u, v)$ is locally approximated as a quadratic error function

Interpreting the second moment matrix

Recall that we want $E(u, v)$ to be as large as possible for all u,v

What does this mean in terms of M ?

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\underbrace{\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]}
\end{gathered}
$$

Second moment matrix

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& \text { M } \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \\
& B=\sum_{(x, y) \in W} I_{x} I_{y} \\
& C=\sum_{(x, y) \in W} I_{y}^{2} \\
& \begin{array}{l}
M=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array} \\
& E(u, v)=0 \quad \forall u, v \\
& \text { Flat patch: } \quad I_{x}=0 \\
& I_{y}=0
\end{aligned}
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
\\
\text { Vertical edge: } I_{y}=0 \\
M
\end{gathered} \quad \begin{aligned}
& M=\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right] \\
& \\
&
\end{aligned}
$$

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
\begin{gathered}
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
0 & 0 \\
0 & C
\end{array}\right] \\
& M\left[\begin{array}{l}
u \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
E(u, 0)=0 \forall u
$$

What about edges in arbitrary orientation?

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow E(u, v)=0 \\
M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow E(u, v)=0
\end{gathered}
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

For corners, we want no such directions to exist

Eigenvalues and eigenvectors of M

- $M x=0 \Rightarrow M x=\lambda x: \mathrm{x}$ is an eigenvector of M with eigenvalue 0
- M is 2×2, so it has 2 eigenvalues $\left(\lambda_{\max }, \lambda_{\min }\right)$ with eigenvectors ($x_{\max }, x_{\min }$)
- $E\left(x_{\max }\right)=x_{\text {max }}^{T} M x_{\text {max }}=\lambda_{\text {max }}\left\|x_{\max }\right\|^{2}=\lambda_{\text {max }}$ (eigenvectors have unit norm)
- $E\left(x_{\text {min }}\right)=x_{\text {min }}^{T} M x_{\text {min }}=\lambda_{\text {min }}\left\|x_{\text {min }}\right\|^{2}=\lambda_{\text {min }}$

Eigenvalues and eigenvectors of
 M

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

M

Eigenvalues and eigenvectors of M

- Define shift directions with the smallest and largest change in error
- $\mathrm{x}_{\text {max }}=$ direction of largest increase in E
- $\lambda_{\max }=$ amount of increase in direction $x_{\max }$
- $\mathrm{x}_{\text {min }}=$ direction of smallest increase in E
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$

Interpreting the eigenvalues

Eigenvalues and eigenvectors of
 M

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{M} x_{\max }=\lambda_{\max } x_{\max } \\
& \mathrm{M} \cdot x_{\min }=\lambda_{\min } x_{\min }
\end{aligned}
$$

Eigenvalues and eigenvectors of M

- Define shift directions with the smallest and largest change in error
- $x_{\max }=$ direction of largest increase in E
- $\lambda_{\max }=$ amount of increase in direction $x_{\max }$
- $\mathrm{x}_{\text {min }}=$ direction of smallest increase in E
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$

Interpreting the eigenvalues

Corner detection: the math

How are $\lambda_{\text {max }}, x_{\text {max }}, \lambda_{\text {min }}$, and $x_{\text {min }}$ relevant for feature detection?

- Need a feature scoring function

Corner detection: the math

How are $\lambda_{\text {max }}, x_{\text {max }}, \lambda_{\text {min }}$, and $x_{\text {min }}$ relevant for feature detection?

- Need a feature scoring function

Want $E(u, v)$ to be large for small shifts in all directions

- the minimum of $E(u, v)$ should be large, over all unit vectors [uv]
- this minimum is given by the smaller eigenvalue $\left(\lambda_{\min }\right)$ of M

I

$\lambda^{\prime} n a x$

$\lambda_{\min }$

Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the M matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ($\lambda_{\text {min }}>$ threshold)
- Choose those points where $\lambda_{\text {min }}$ is a local maximum as features

I

$\lambda_{n} a x$

$\lambda_{n} 1 n$

Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{\text {min }}>$ threshold)
- Choose those points where $\lambda_{\text {min }}$ is a local maximum as features

The Harris operator

$\lambda_{\text {min }}$ is a variant of the "Harris operator" for feature detection

$$
\begin{aligned}
& f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
= & \frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}
\end{aligned}
$$

- The trace is the sum of the diagonals, i.e., $\operatorname{trace}(H)=h_{11}+h_{22}$
- Very similar to $\lambda_{\text {min }}$ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Actually the Noble variant of the Harris Corner Detector
- Lots of other detectors, this is one of the most popular

Corner response function

 $R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$

The Harris operator

Harris
operator

Harris Detector ${ }_{[H a r i s 88]}$

- Second moment matrix

$$
\mu\left(\sigma_{I}, \sigma_{D}\right)=g\left(\sigma_{I}\right) *\left[\begin{array}{cc}
I_{x}^{2}\left(\sigma_{D}\right) & I_{x} I_{y}\left(\sigma_{D}\right) \\
I_{x} I_{y}\left(\sigma_{D}\right) & I_{y}^{2}\left(\sigma_{D}\right)
\end{array}\right]
$$

1. Image derivatives (optionally, blur first)
2. Square of derivatives

$$
\begin{aligned}
& \text { 3. Gaussian } \\
& \text { filter } g\left(\sigma_{l}\right)
\end{aligned}
$$

trace $M=\lambda_{1}+\lambda_{2}$

$$
\operatorname{det} M=\lambda_{1} \lambda_{2}
$$

trace $M=\lambda_{1}+\lambda_{2}$

4. Cornerness function - both eigenvalues are strong har $=\operatorname{det}\left[\mu\left(\sigma_{I}, \sigma_{D}\right)\right]-\alpha\left[\operatorname{trace}\left(\mu\left(\sigma_{I}, \sigma_{D}\right)\right)^{2}\right]=$ $g\left(I_{x}^{2}\right) g\left(I_{y}^{2}\right)-\left[g\left(I_{x} I_{y}\right)\right]^{2}-\alpha\left[g\left(I_{x}^{2}\right)+g\left(I_{y}^{2}\right)\right]^{2}$
5. Non-maxima suppression

Weighting the derivatives

- In practice, using a simple window W doesn't work too well

$$
H=\sum_{(x, y) \in W}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

- Instead, we'll weight each derivative value based on its distance from the center pixel

$$
H=\sum_{(x, y) \in W} w_{x, y}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Harris detector example

f value (red high, blue low)

Threshold ($f>$ value)

Find local maxima of f

Harris features (in red)

