
The	correspondence	
problem

Why?

• Multiple	images	can	give	a	clue	about	3D	structure

Why?	Reconstruction

• Need	to	find	which	pixel	in	image	2	matches	which	
in	image	1	- the	correspondence	problem

Reconstruction	from	
correspondence
• Given	known	cameras,	correspondence	gives	the	
location	of	3D	point	(Triangulation)

Reconstruction	from	
correspondence

Reconstruction	from	
correspondence
• Specific	application:	depth	cameras

https://realsense.intel.com/stereo/
Microsoft Kinect

Reconstruction	from	
correspondence	- Pose	estimation
• Given	a	3D	point,	correspondence	gives	
relationship	between	cameras	(Pose	estimation	/	
camera	calibration)

Pose-estimation

Pose-estimation	/	Camera	
calibration
• Specific	application:	panorama	stitching

• We	have	two	images	– how	do	we	combine	them?

Pose-estimation	/	Camera	
calibration
• Specific	application:	panorama	stitching

• We	have	two	images	– how	do	we	combine	them?

Step	1:	extract	correspondence

Pose-estimation	/	Camera	
calibration
• Specific	application:	panorama	stitching

• We	have	two	images	– how	do	we	combine	them?

Step	1:	extract	correspondence
Step	2:	align	images

Other	applications	of	
correspondence
• Recognition:	Match	image	to	product	view

Lowe,	IJCV	2004

Other	applications	of	correspondence	
• Image	alignment	
• Motion	tracking
• Robot	navigation

Correspondence	can	be	
challenging

Fei-Fei Li

Correspondence

by	Diva	Sian

by	swashford

Harder	case

by	Diva	Sian by	scgbt

Harder	still?

NASA	Mars	Rover	images
with	SIFT	feature	matches

Answer	below	(look	for	tiny	colored	squares…)

Dense	correspondence

• Some	applications	demand	correspondence	for	
every	pixel

• For	example	dense	3D	reconstruction

Sparse	correspondence

• Sometimes	a	sparse	set	of	correspondences	are	
enough

• E.g.	estimating	pose	or	camera	relationships.	Why?
• Pose	/	camera	relationships	only	consist	of	a	small	
number	of	variables

• Need	only	a	little	bit	of	information	to	recover	it.

A	general	pipeline	for	
correspondence
1. If	sparse	correspondences	are	enough,	choose	

points	for	which	we	will	search	for	
correspondences	(feature	points)

2. For	each	point	(or	every	pixel	if	dense	
correspondence),	describe	point	using	a	feature	
descriptor

3. Find	best	matching	descriptors	across	two	images	
(feature	matching)

4. Use	feature	matches	to	perform	downstream	
task,	e.g.,	pose	estimation	

A	general	pipeline	for	
correspondence
1. If	sparse	correspondences	are	enough,	choose	

points	for	which	we	will	search	for	
correspondences	(feature	points)

2. For	each	point	(or	every	pixel	if	dense	
correspondence),	describe	point	using	a	feature	
descriptor

3. Find	best	matching	descriptors	across	two	images	
(feature	matching)

4. Use	feature	matches	to	perform	downstream	
task,	e.g.,	pose	estimation	

Sparse	correspondence

• Which	pixels	should	be	searching	correspondence	
for?

• Feature	points	/	keypoints

Snoop demo

What	makes	a	good	feature	
point?

Characteristics of good feature
points

• Repeatability / invariance
• The same feature point can be found in several images despite

geometric and photometric transformations

• Saliency / distinctiveness
• Each feature point is distinctive
• Fewer ”false” matches

Goal: repeatability
• We	want	to	detect	(at	least	some	of)	the	same	points	in	both	images.

• Yet	we	have	to	be	able	to	run	the	detection	procedure	independently per	
image.

No chance to find true matches!

Kristen Grauman

Repeatability	/	invariance

• The	feature	detector	should	“fire”	at	consistent	
places	in	spite	of	rotation,	translation	etc.

Image	credit	:	L.	Fei-
Fei

Repeatability	/	invariance

Goal:	distinctiveness

• The	feature	point	should	be	distinctive	enough	that	
it	is	easy	to	match

• Should	at	least	be	distinctive	from	other	patches	nearby

????

Where	would	you	tell	
your	friend	to	meet	
you?

Where	would	you	tell	
your	friend	to	meet	
you?

Choosing	distinctive	interest	
points
• If	you	wanted	to	meet	a	friend	would	you	say

a) “Letʼs	meet	on	campus.”
b) “Letʼs	meet	on	Green	street.”
c) “Letʼs	meet	at	Green	and	Wright.”
• Corner	detection

• Or	if	you	were	in	a	secluded	area:
a) “Letʼs	meet	in	the	Plains	of	Akbar.”
b) “Letʼs	meet	on	the	side	of	Mt.	Doom.”
c) “Letʼs	meet	on	top	of	Mt.	Doom.”
• Blob	(valley/peak)	detection

The	aperture	problem

The	aperture	problem

• Individual	pixels	are	ambiguous
• Idea:	Look	at	whole	patches!

The	aperture	problem

• Individual	pixels	are	ambiguous
• Idea:	Look	at	whole	patches!

The	aperture	problem

• Some	local	neighborhoods are	ambiguous

The	aperture	problem

Corner	detection

• Main	idea:	Translating	window	should	cause	large	
differences	in	patch	appearance

Corner Detection: Basic Idea
• We should easily recognize the point by looking

through a small window
• Shifting a window in any direction should give a

large change in intensity

“edge”:
no change
along the edge
direction

“corner”:
significant
change in all
directions

“flat” region:
no change in
all directions

Source: A. Efros

Corner	detection	the	math

• Consider	shifting	the	window	W
by	(u,v)
• how	do	the	pixels	in	W	change?

• Write	pixels	in	window	as	a	vector:	 W

�0 = [I(0, 0), I(0, 1), . . . , I(n, n)]

�1 = [I(0 + u, 0 + v), I(0 + u, 1 + v), . . . , I(n+ u, n+ v)]

E(u, v) = k�0 � �1k22
=

X

(x,y)2W

(I(x, y)� I(x+ u, y + v))2

Consider	shifting	the	window	W by	(u,v)
• how	do	the	pixels	in	W change?
• compare	each	pixel	before	and	after	by
summing	up	the	squared	differences	(SSD)

• this	defines	an	SSD	“error”	E(u,v):

• We	want	E(u,v)	to	be	as	high	as	possible	
for	all	u,	v!

Corner	detection:		the	math

W

Corner Detection: Mathematics

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

Change in appearance of window w(x,y)
for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)

Corner Detection: Mathematics

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y)
for the shift [u,v]:

Corner Detection: Mathematics

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y)
for the shift [u,v]:

Corner Detection: Mathematics

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

We want to find out how this function behaves for
small shifts

Change in appearance of window w(x,y)
for the shift [u,v]:

E(u, v)

Taylor	Series	expansion	of	I:

If	the	motion	(u,v)	is	small,	then	first	order	approximation	is	good

Plugging	this	into	the	formula	on	the	previous	slide…

Small	motion	assumption

Corner	detection:		the	math

Consider	shifting	the	window	W by	(u,v)
• define	an	SSD	“error”	E(u,v):

W

Corner	detection:		the	math

Consider	shifting	the	window	W by	(u,v)
• define	an	“error”	E(u,v):

W

• Thus,	E(u,v)	is	locally	approximated	as	a	quadratic	error	function

Recall that we want E(u,v) to be as large as
possible for all u,v

What does this mean in terms of M?

Interpreting the second moment matrix

ú
û

ù
ê
ë

é
»

v
u

MvuvuE][),(

å
ú
ú
û

ù

ê
ê
ë

é
=

yx yyx

yxx

III
III

yxwM
,

2

2

),(

Second	moment	matrix

Flat	patch:	

M

M =


0 0
0 0

�

E(u, v) = 0 8u, v

M


u
v

�
=


0
0

�

Vertical	edge:	

M

M

E(0, v) = 0 8v

M


0
v

�
=


0
0

�

Horizontal	edge:	

MM

M

M


u
0

�
=


0
0

�

E(u, 0) = 0 8u

What	about	edges	in	arbitrary	
orientation?

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�

M


u
v

�
=


0
0

�
) E(u, v) = 0

M


u
v

�
=


0
0

�
, E(u, v) = 0

Solutions	to	Mx =	0	are	directions	for	which	E	
is	0:	window	can	slide	in	this	direction	
without	changing	appearance

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�

Solutions	to	Mx =	0	are	directions	for	which	E	
is	0:	window	can	slide	in	this	direction	
without	changing	appearance

For	corners,	we	want	no	such	directions	to	
exist

u v

E(u,v)
E(u,v) E(u,v) E(u,v)

v v vu u u

Eigenvalues	and	eigenvectors	of	
M

• 𝑀𝑥 = 0 ⇒ 𝑀𝑥 = 𝜆𝑥:	x	is	an	eigenvector	of	M	with	
eigenvalue	0

• M	is	2	x	2,	so	it	has	2	eigenvalues	(𝜆()*, 𝜆(,-) with	
eigenvectors	(𝑥()*, 𝑥(,-)

• 𝐸 𝑥()* = 		 𝑥()*1 𝑀𝑥()* = 𝜆()*||𝑥()*||3 = 𝜆()*
(eigenvectors	have	unit	norm)

• 𝐸 𝑥(,- = 𝑥(,-1 𝑀𝑥(,- = 𝜆(,-||𝑥(,-||3 = 𝜆(,-

Eigenvalues	and	eigenvectors	of	
M

Eigenvalues	and	eigenvectors	of	M
• Define	shift	directions	with	the	smallest	and	largest	change	in	error
• xmax =	direction	of	largest increase	in	E
• lmax =	amount	of	increase	in	direction	xmax

• xmin =	direction	of	smallest increase	in	E
• lmin =	amount	of	increase	in	direction	xmin

xmin

xmax

M

M

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�

𝜆()* ≈ 𝜆(,- 	≫ 0
E	very	high	in	all	directions

Corner

𝜆()* ≫ 𝜆(,-, 𝜆(,- ≈ 0
E	remains	close	to	0	
along	𝑥(,-

Edge𝜆()*, 𝜆(,-	are small;
E is almost 0 in all
directions Flat	patch

𝜆(,-

𝜆()*

Interpreting the eigenvalues

