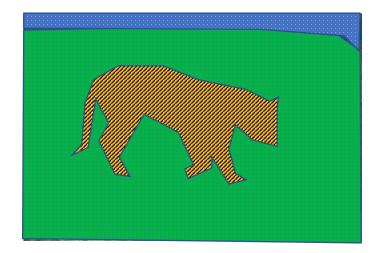
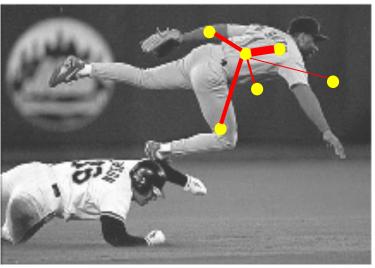
Grouping

What is grouping?

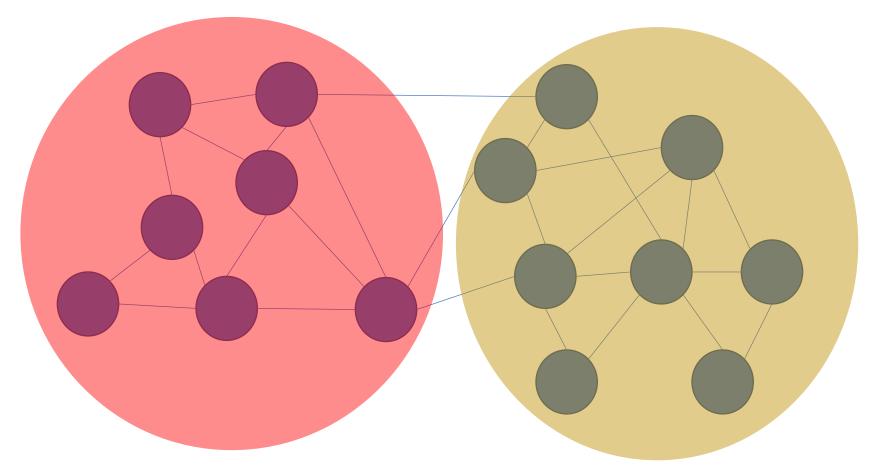


Images as graphs

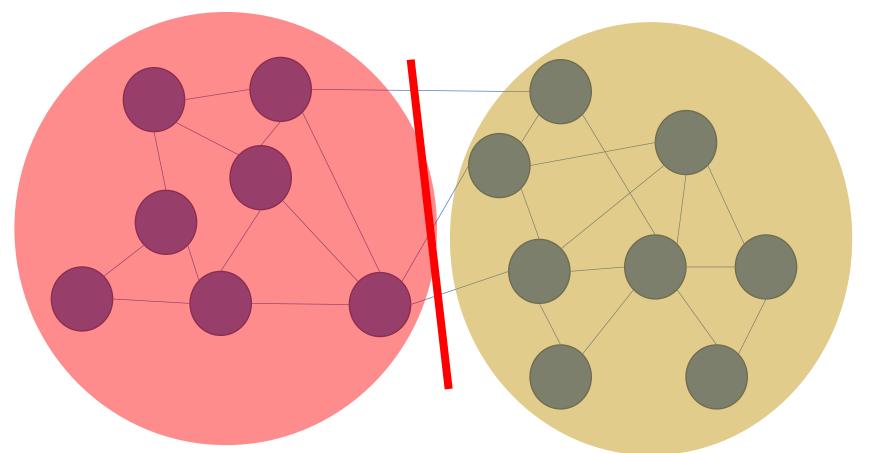
- Each pixel is node
- Edge between "similar pixels"
 - *Proximity:* nearby pixels are more similar
 - Similarity: pixels with similar color are more similar
- Weight of edge = similarity



Segmentation is graph partitioning

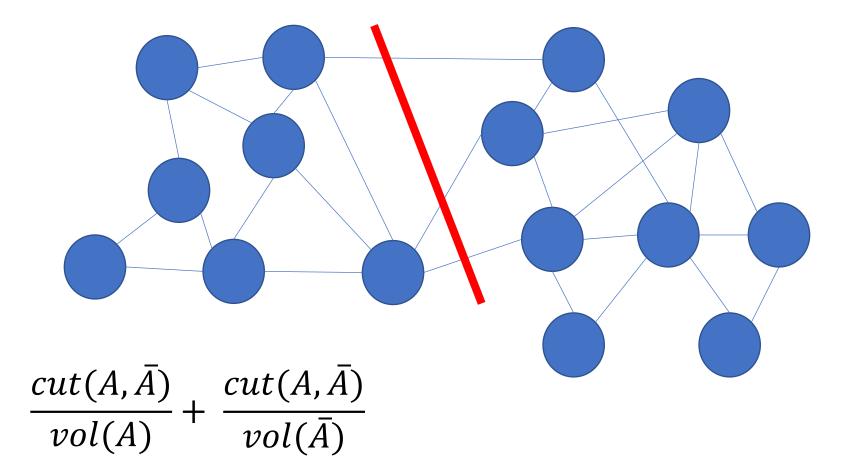


Segmentation is graph partitioning

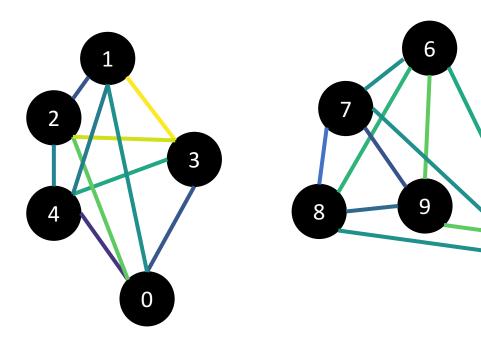


• Every partition "cuts" some edges

Normalized cut

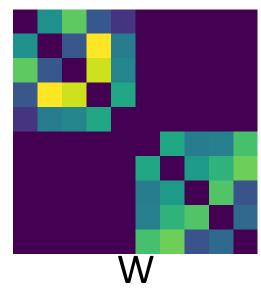


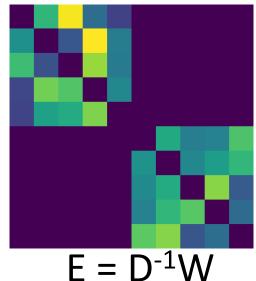
Graphs and matrices



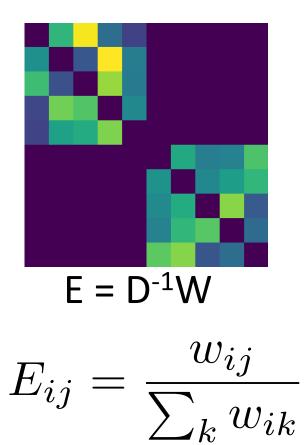
 $E_{ij} = \frac{w_{ij}}{\sum_k w_{ik}}$

5





Graphs and matrices



	v_1	Ev ₁
0:	1	1
1:	1	1
2:	1	1
3:	1	1
4:	1	1
5:	0	0
6:	0	0
7:	0	0
8:	0	0
9:	0	0

Graphs and matrices V_1 0: 1 1: 1 2: 1 3: 1 4: 1 5: 0 6: 0 7: 0 $E = D^{-1}W$ 8: 0 9: 0 $E_{ij} = \frac{w_{ij}}{\sum_k w_{ik}}$

 \mathbf{Ev}_1

1

1

1

1

1

0

0

0.2

0

0

Graphs and matrices

$$D^{-1}Wy \approx y$$
 Define z so that $y = D^{-\frac{1}{2}}z$

$$D^{-1}WD^{-\frac{1}{2}}z \approx D^{-\frac{1}{2}}z$$
$$\Rightarrow D^{-\frac{1}{2}}WD^{-\frac{1}{2}}z \approx z$$
$$\Rightarrow (I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}})z \approx 0$$

Graphs and matrices $\Rightarrow (I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}})z \approx 0$ $\Rightarrow \mathcal{L}z \approx 0$

 $\mathcal{L} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$

is called the Normalized Graph Laplacian

Graphs and matrices

$$\mathcal{L} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$$

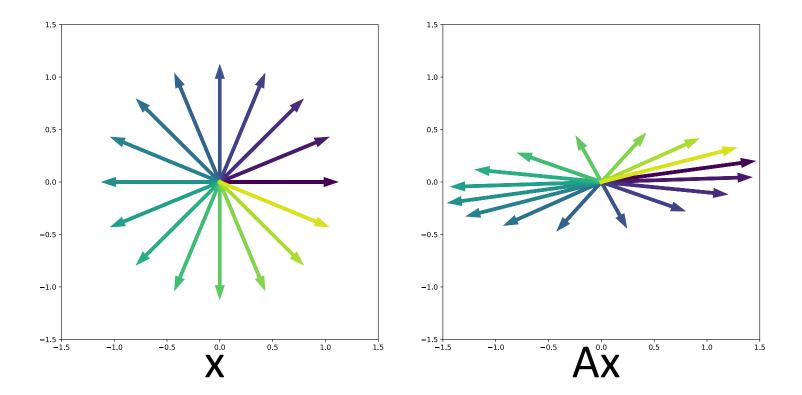
- We want $\mathcal{L}z pprox 0$
- Trivial solution: all nodes of graph in one cluster, nothing in the other
- To avoid trivial solution, look for the *eigenvector* with the second smallest eigenvalue

$$\mathcal{L}z = \lambda z$$
$$\lambda_1 < \lambda_2 < \ldots < \lambda_N$$

• Find z s.t. $\mathcal{L}z = \lambda_2 z$

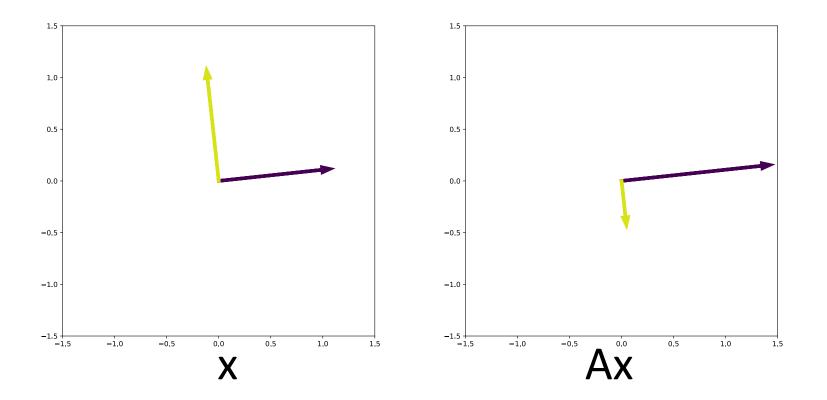
A quick detour into eigenvalues and eigenvectors

 Given vector x and matrix A, what does Ax look like?



A quick detour into eigenvalues and eigenvectors

• Given a matrix A, x is an eigenvector with eigenvalue λ if $Ax = \lambda x$



A quick detour into eigenvalues and eigenvectors

- Given a matrix A, x is an eigenvector with eigenvalue λ if $Ax = \lambda x$
- Any square real symmetric n x n matrix has n eigenvalues
- For symmetric mats, eigenvectors corresponding to two different eigenvalues are orthogonal

$$\lambda_1 = \min_x \frac{\|Ax\|}{\|x\|}$$
 $\lambda_2 = \min_x \frac{\|Ax\|}{\|x\|}$ s.t. $x^T v_1 = 0$

Eigenvectors and the graph laplacian

- We want $\mathcal{L}zpprox 0$
- Trivial solution z₀: all nodes of graph in one cluster, nothing in the other
 - $\cdot \mathcal{L}z_0 = 0$
 - z0 is eigenvector with 0 eigenvalue
- We want $\mathbf{z}^{\mathrm{T}}\mathbf{z}_{\mathrm{0}}$ = 0 and $\ensuremath{\mathcal{L}} z \approx 0$
- Look for eigenvector with *second-smallest* eigenvalue

Normalized cuts

- Approximate solution to normalized cuts
- Construct matrix W and D
- Construct normalized graph laplacian $\mathcal{L} = I D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$
- Look for the second smallest eigenvector

$$\mathcal{L}z = \lambda_2 z$$

- Compute $y = D^{-\frac{1}{2}}z$
- Threshold y to get clusters
 - Ideally, sweep threshold to get lowest N-cut value

More than 2 clusters

- Given graph, use N-cuts to get 2 clusters
- Each cluster is a sub-graph
 - Re-run N-cuts on each sub-graph

Normalized cuts

- NP Hard
- But approximation using *eigenvector of normalized* graph laplacian
 - Smallest eigenvector : trivial solution
 - Second smallest eigenvector: good partition
 - Other eigenvectors: other partitions
- An instance of "Spectral clustering"
 - Spectrum = set of eigenvalues
 - Spectral clustering = clustering using eigenvectors of (various versions of) graph laplacian

Images as graphs

- Each pixel is a node
- What is the edge weight between two nodes / pixels?
 - F(i): intensity / color of pixel i
 - X(i): position of pixel i

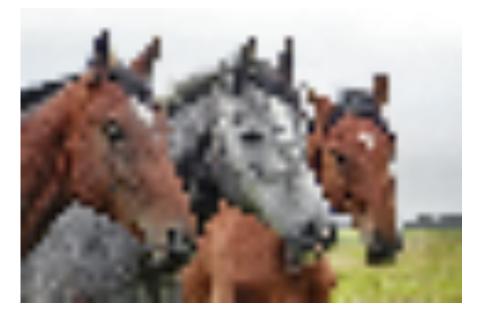
$$w_{ij} = e^{rac{-\|\boldsymbol{F}(i) - \boldsymbol{F}(j)\|_2^2}{\sigma_I}} * \begin{cases} e^{rac{-\|\boldsymbol{X}(i) - \boldsymbol{X}(j)\|_2^2}{\sigma_X}} & ext{if } \|\boldsymbol{X}(i) - \boldsymbol{X}(j)\|_2 < r \\ 0 & ext{otherwise}, \end{cases}$$

Computational complexity

- A 100 x 100 image has 10K pixels
- A graph with 10K pixels has a 10K x 10K affinity matrix
- Eigenvalue computation of an N x N matrix is O(N³)
- Very very expensive!

Eigenvectors of images

The eigenvector has as many components as pixels in the image

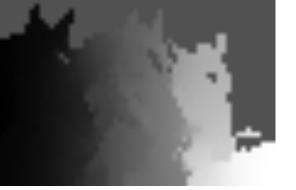


2nd Eigenvector

2nd Eigenvector

Recursive N-cuts

2nd eigenvector

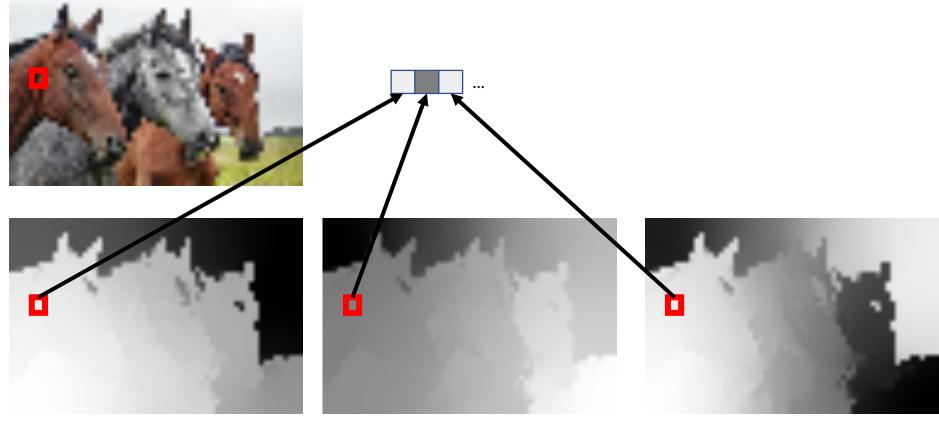


recursive partition

2nd eigenvector of 1st subgraph

First partition

Eigenvectors as pixel representations



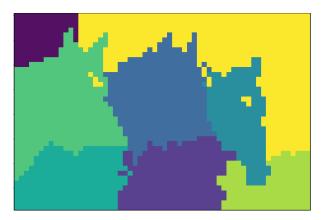
2nd eigenvector

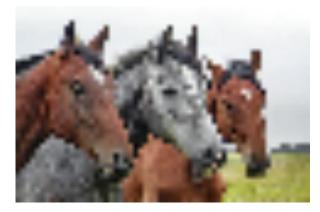
3rd eigenvector

4th eigenvector

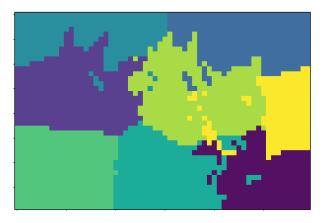
K-means

K-Means: Pixel represented using top 10 eigenvectors

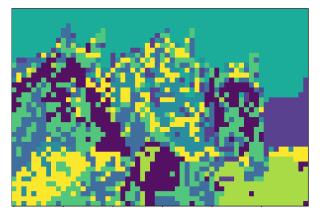




K-Means: RGB + X,Y

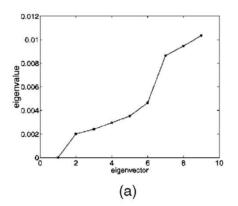


K-Means: RGB



Another example

Eigenvectors of images



(b)

(c)

(e)

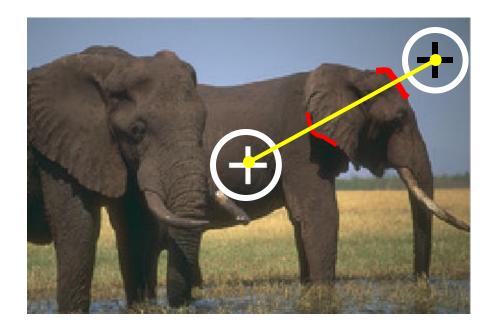
(f)

N-Cuts resources

- <u>http://scikit-</u> <u>learn.org/stable/modules/clustering.html#spectral-</u> <u>clustering</u>
- <u>https://people.eecs.berkeley.edu/~malik/papers/S</u> <u>M-ncut.pdf</u>

Images as graphs

Enhancement: edge between far away pixel, weight
= 1 – magnitude of *intervening contour*



Eigenvectors of images

Grouping: a summary

- Goal: group pixels into objects
- Simple baselines based on color similarity and local reasoning: Canny, k-means
- Complex solution to exploit contour continuity and global reasoning: N-Cuts
- Challenges:
 - Texture
 - What is k?
- Grouping still a research problem!

The correspondence problem

Why?

• Multiple images can give a clue about 3D structure

Why? Reconstruction

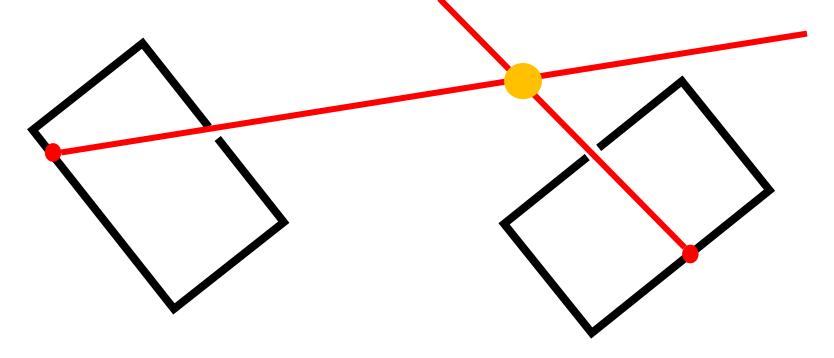
• Multiple images can give a clue about 3D structure

Why? Reconstruction

• Need to find which pixel in image 2 matches which in image 1 - the *correspondence* problem

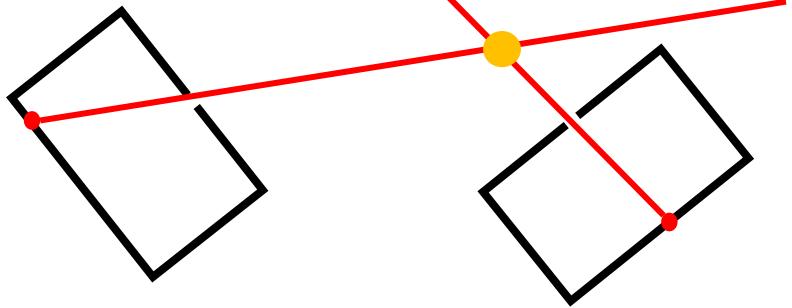
Reconstruction from correspondence

• Given known cameras, correspondence gives the location of 3D point (*Triangulation*)



Reconstruction from correspondence

 Given a 3D point, correspondence gives relationship between cameras (*Pose estimation / camera calibration*)

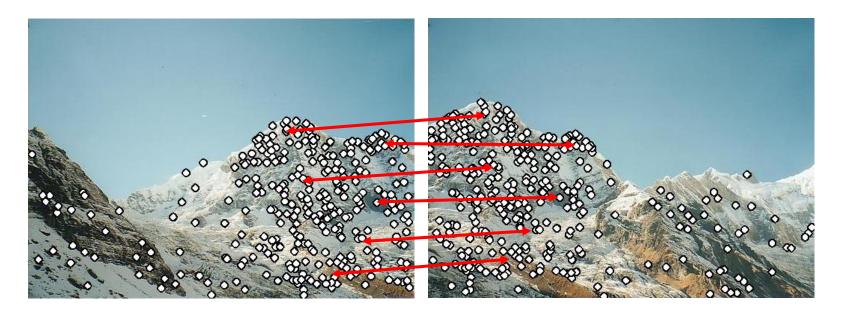


Pose-estimation / Camera calibration

- Motivation: panorama stitching
 - We have two images how do we combine them?

Pose-estimation / Camera calibration

- Motivation: panorama stitching
 - We have two images how do we combine them?



Step 1: extract correspondence

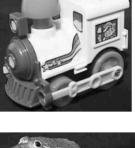
Pose-estimation / Camera calibration

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract correspondence Step 2: align images

Why correspondence?

• Recognition: Match image to product view



Lowe, IJCV 2004

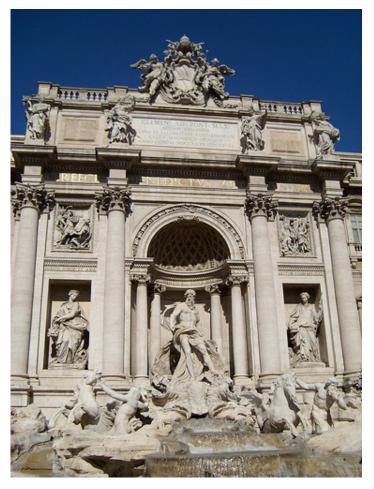
Other applications of correspondence

- Image alignment
- Motion tracking
- Robot navigation

Correspondence can be challenging

Correspondence

by <u>Diva Sian</u>



by swashford

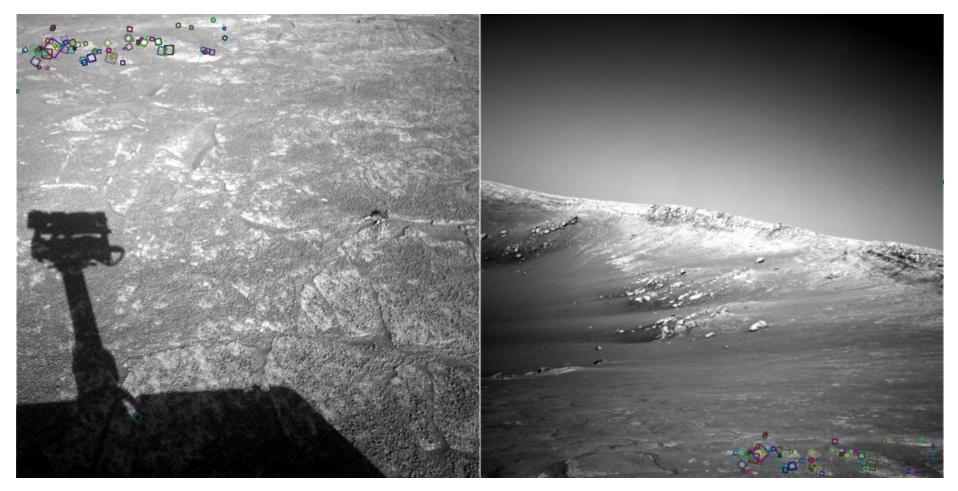
Harder case

by <u>Diva Sian</u>

by <u>scgbt</u>

Harder still?

Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches

Sparse vs dense correspondence

- Sparse correspondence: produce a few, high confidence matches
 - Good enough for estimating pose or relationship between cameras
- Dense correspondence: try to match every pixel
 - Needed if we want 3D location of every pixel

Sparse correspondence

- Which pixels should be searching correspondence for?
 - Feature points / keypoints

What makes a good feature point?

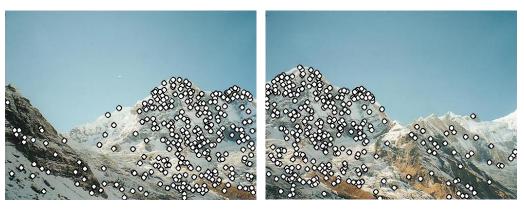
delicious vit-hydration to revive

做

SAM

mind.

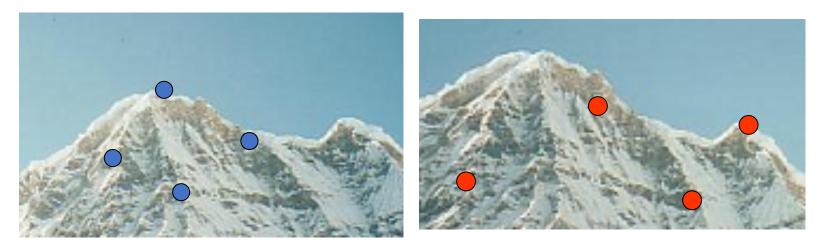
Characteristics of good feature points



- Repeatability / invariance
 - The same feature point can be found in several images despite geometric and photometric transformations
- Saliency / distinctiveness
 - Each feature point is distinctive
 - · Fewer "false" matches

Goal: repeatability

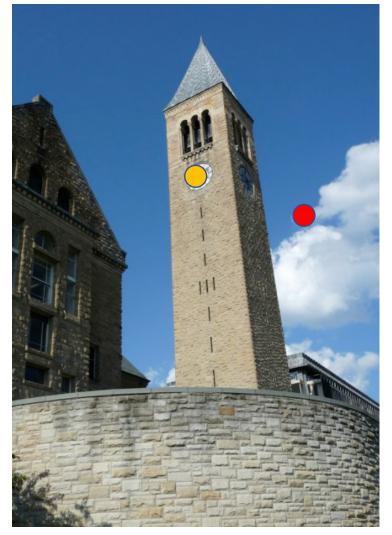
• We want to detect (at least some of) the same points in both images.



No chance to find true matches!

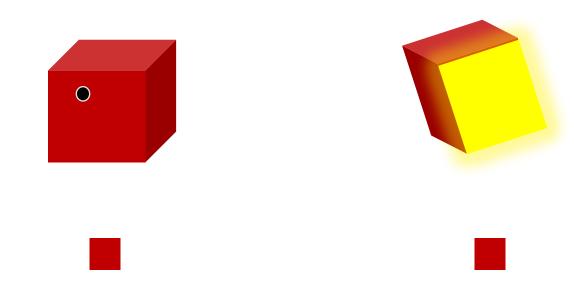
• Yet we have to be able to run the detection procedure *independently* per image.

Repeatability / invariance

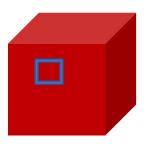


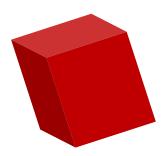
Goal: distinctiveness

- The feature point should be distinctive enough that it is easy to match
 - Should *at least* be distinctive from other patches nearby

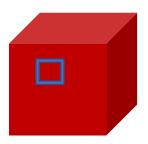


- Individual pixels are ambiguous
- Idea: Look at whole patches!





- Individual pixels are ambiguous
- Idea: Look at whole patches!



• Some local neighborhoods are ambiguous

