Grouping



What is grouping?
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Images as graphs

* Each pixel is node

* Edge between “similar pixels”
* Proximity: nearby pixels are more similar
* Similarity: pixels with similar color are more similar

* Weight of edge = similarity




Segmentation is graph
partitioning




Segmentation is graph
partitioning

* Every partition “cuts” some edges



Normalized cut

cut(4,4) cut(4,4)
vol(A) T vol(A)




Graphs and matrices
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Graphs and matrices
D™ Wy =~y
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Graphs and matrices
—~ (I—-D WD %)z~ 0
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is called the

Normalized Graph
Laplacian



Graphs and matrices

L=T—D 2WD 3

* We want [,Z ~ ()

* Trivial solution: all nodes of graph in one cluster,
nothing in the other

* To avoid trivial solution, look for the eigenvector
with the second smallest eigenvalue

L2 = Az
AM < Ao < ...< AnN
* Findzst. Lz = Aoz



A quick detour into eigenvalues
and eigenvectors

e Given vector x and matrix A, what does Ax look
like?
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A quick detour into eigenvalues
and eigenvectors

e Given a matrix A, x is an eigenvector with
eigenvalue A if Ax = Ax




A quick detour into eigenvalues
and eigenvectors

e Given a matrix A, x is an eigenvector with
eigenvalue A if Ax = Ax

* Any square real symmetric n x n matrix has n
eigenvalues

* For symmetric mats, eigenvectors corresponding to
two different eigenvalues are orthogonal

A
A1 = min Ao = mm | Az]

s.t. xt v =
r |z [l
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Eigenvectors and the graph
laplacian

* We want L:Z ~ (

* Trivial solution z,: all nodes of graph in one cluster,
nothing in the other

‘£Z():O

e z0 is eigenvector with O eigenvalue
* We wantz'z,=0and Lz ~ 0

* Look for eigenvector with second-smallest
eigenvalue



Normalized cuts

* Approximate solution to normalized cuts
* Construct matrix W and D
e Construct normalized graph laplacian
L=]—-D WDz
* Look for the second smallest eigenvector
Lz = )\22
« Compute Y = D_%Z

e Threshold y to get clusters
* |deally, sweep threshold to get lowest N-cut value



More than 2 clusters

* Given graph, use N-cuts to get 2 clusters

e Each cluster is a sub-graph
* Re-run N-cuts on each sub-graph



Normalized cuts

e NP Hard

* But approximation using eigenvector of normalized
graph laplacian
* Smallest eigenvector : trivial solution
* Second smallest eigenvector: good partition
» Other eigenvectors: other partitions

* An instance of “Spectral clustering”
e Spectrum = set of eigenvalues

e Spectral clustering = clustering using eigenvectors of
(various versions of) graph laplacian



Images as graphs

* Each pixel is a node
* What is the edge weight between two nodes /
pixels?
* F(i): intensity / color of pixel i
* X(i): position of pixel i

Fo-F@I2 [ IXOXOl , .
wi;=e 1 k¢ € K if [ X(4) — X(g)lly <7
L0 otherwise,




Computational complexity

* A 100 x 100 image has 10K pixels

* A graph with 10K pixels has a 10K x 10K affinity
matrix

 Eigenvalue computation of an N x N matrix is O(N3)
* Very very expensive!



Eigenvectors of images

The eigenvector has as many
components as pixels in the image

2"d Eigenvector

2"d Eigenvector



Recursive N-cuts

2"d eigenvector

First partition 2"d eigenvector of 15t recursive partition
subgraph



Eigenvectors as pixel
representations
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2"d eigenvector 3 eigenvector



K_ means K-Means: Pixel

represented using
top 10
eigenvectors

K-Means: RGB +
X,Y

K-Means: RGB




Another example




Eigenvectors of images




N-Cuts resources

* http://scikit-
learn.org/stable/modules/clustering.html#spectral-
clustering

 https://people.eecs.berkeley.edu/~malik/papers/S
M-ncut.pdf




Images as graphs

* Enhancement: edge between far away pixel, weight
= 1 — magnitude of intervening contour




Eigenvectors of images




Grouping: a summary

* Goal: group pixels into objects

* Simple baselines based on color similarity and local
reasoning: Canny, k-means

* Complex solution to exploit contour continuity and
global reasoning: N-Cuts

* Challenges:

* Texture
e What is k?

* Grouping still a research problem!



The correspondence
oroblem



Why?

* Multiple images can give a clue about 3D structure




Why? Reconstruction

* Multiple images can give a clue about 3D structure




Why? Reconstruction

* Need to find which pixel in image 2 matches which
in image 1 - the correspondence problem




Reconstruction from
correspondence

* Given known cameras, correspondence gives the
location of 3D point (Triangulation)

SR



Reconstruction from
correspondence

* Given a 3D point, correspondence gives
relationship between cameras (Pose estimation /

camera calibration) \ /



Pose-estimation / Camera
calibration

e Motivation: panorama stitching
* We have two images — how do we combine them?




Pose-estimation / Camera
calibration

e Motivation: panorama stitching
* We have two images — how do we combine them?

Step 1: extract correspondence



Pose-estimation / Camera
calibration

e Motivation: panorama stitching
* We have two images — how do we combine them?

Step 1: extract correspondence
Step 2: align images



Why correspondence?

* Recognition: Match image to product view

Lowe, IJCV 2004



Other applications of correspondence

* Image alighment
* Motion tracking
* Robot navigation




Correspondence can be
challenging

Fei-Fei Li




Correspondence
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by Diva Sian
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Harder case

by Diva Sian



Harder still?




Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches



Sparse vs dense correspondence

» Sparse correspondence: produce a few, high confidence
matches

* Good enough for estimating pose or relationship between cameras

* Dense correspondence: try to match every pixel
* Needed if we want 3D location of every pixel




Sparse correspondence

* Which pixels should be searching correspondence
for?

* Feature points / keypoints
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Characteristics of good feature
points

« Repeatability / invariance
« The same feature point can be found in several images despite
geometric and photometric transformations

« Saliency / distinctiveness
» Each feature point is distinctive
» Fewer "false” matches



Goal: repeatability

e We want to detect (at least some of) the same points in both images.

No chance to find true matches!

e Yet we have to be able to run the detection procedure independently per
image.

Kristen Grauman



Repeatability / invariance




Goal: distinctiveness

* The feature point should be distinctive enough that
it is easy to match

* Should at least be distinctive from other patches nearby




The aperture problem




The aperture problem

e

* Individual pixels are ambiguous
* |dea: Look at whole patches!




The aperture problem

8

* Individual pixels are ambiguous
* |dea: Look at whole patches!




The aperture problem

* Some local neighborhoods are ambiguous

8




The aperture problem

«

«




