Grouping

What is grouping?

K-means

Input: set of data points, k

1. Randomly pick k points as means
2. For i in [0, maxiters]:
3. Assign each point to nearest center
4. Re-estimate each center as mean of points assigned to it

K-means - the math

Input: set of data points X, k

1. Randomly pick k points as means $\mu_{i}, i=1, \ldots, k$
2. For iteration in [0, maxiters]:
3. Assign each point to nearest center

$$
y_{i}=\arg \min _{j}\left\|x_{i}-\mu_{j}\right\|^{2}
$$

2. Re-estimate each center as mean of points assigned to it

$$
\mu_{j}=\frac{\sum_{i: y_{i}=j} x_{i}}{\sum_{i: y_{i}=j} 1}
$$

K-means - the math

- An objective function that must be minimized:

$$
\min _{\mu, y} \sum_{i}\left\|x_{i}-\mu_{y_{i}}\right\|^{2}
$$

- Every iteration of k-means takes a downward step:
- Fixes μ and sets y to minimize objective
- Fixes y and sets μ to minimize objective

K-means on image pixels

K-means on image pixels

Picture courtesy David Forsyth

One of the clusters from k means

K-means on image pixels

- What is wrong?
- Pixel position
- Nearby pixels are likely to belong to the same object
- Far-away pixels are likely to belong to different objects
- How do we incorporate pixel position?
- Instead of representing each pixel as (r,g,b)
- Represent each pixel as (r,g,b,x,y)

K-means on image pixels

The issues with k-means

- Captures pixel similarity but
- Doesn't capture continuity
- Captures proximity only weakly
- Can merge far away objects together
- Requires knowledge of k !

Oversegmentation and superpixels

- We don't know k. What is a safe choice?
- Idea: Use large k
- Can potentially break big objects, but will hopefully not merge unrelated objects
- Later processing can decide which groups to merge
- Called superpixels

Regions \leftrightarrow Boundaries

Does Canny always work?

The aperture problem

The aperture problem

$\overline{7}$

Images as graphs

- Each pixel is node
- Edge between "similar pixels"
- Proximity: nearby pixels are more similar
- Similarity: pixels with similar color are more similar
- Weight of edge = similarity

Segmentation is graph partitioning

Segmentation is graph partitioning

- Every partition "cuts" some edges
- Idea: minimize total weight of edges cut!

Criterion: Min-cut?

- Min-cut carves out small isolated parts of the graph
- In image segmentation: individual pixels

Normalized cuts

- "Cut" = total weight of cut edges
- Small cut means the groups don’t "like" each other
- But need to normalize w.r.t how much they like themselves
- "Volume" of a subgraph = total weight of edges within the subgraph

Normalized cut

Min-cut vs normalized cut

- Both rely on interpreting images as graphs
- By itself, min-cut gives small isolated pixels
- But can work if we add other constraints
- min-cut can be solved in polynomial time
- Dual of max-flow
- N-cut is NP-hard
- But approximations exist!

Random walk

Random walk

Random walk

Random walk

- Given that ghosts inhabit set A , how likely are they to stay in A?

Random walk

- Given that ghosts inhabit set A , how likely are they to stay in A?

Random walk

- Given that ghosts inhabit set A , how likely are they to stay in A?

Random walk

- Given that ghosts inhabit set A , how likely are they to stay in A?

Random walk

- Key idea: Partition should be such that ghost should be likely to stay in one partition
- Normalized cut criterion is the same as this
- But how do we find this partition?

Graphs and matrices

- $\mathrm{w}(\mathrm{i}, \mathrm{j})=$ weight between i and j (Affinity matrix)
- $\mathrm{d}(\mathrm{i})=$ degree of $\mathrm{i}=\sum_{j} w(i, j)$
- $\mathrm{D}=$ diagonal matrix with $\mathrm{d}(\mathrm{i})$ on diagonal

Graphs and matrices

W

Graphs and matrices

$$
E_{i j}=\frac{w_{i j}}{\sum_{k} w_{i k}}
$$

$E=D^{-1} W$

Graphs and matrices

- How do we represent a clustering?
- A label for N nodes
- 1 if part of cluster A, 0 otherwise

	v_{1}
$0:$	1
$1:$	1
$2:$	1
$3:$	1
$4:$	1
$5:$	0
$6:$	0
$7:$	0
$8:$	0
$9:$	0

Graphs and matrices

- How do we represent a clustering?
- A label for N nodes
- 1 if part of cluster A, 0 otherwise
- An N-dimensional vector!

	v_{1}	v_{2}
$0:$	1	0
$1:$	1	0
$2:$	1	0
$3:$	1	0
$4:$	1	0
$5:$	0	1
$6:$	0	1
$7:$	0	1
$8:$	0	1
$9:$	0	1

Graphs and matrices

- How do we represent a clustering?
- A label for N nodes
- 1 if part of cluster A, 0 otherwise
- An N-dimensional vector!

	v_{1}	v_{2}	v_{3}
$0:$	1	0	0
$1:$	1	0	0
$2:$	1	1	1
$3:$	1	1	1
$4:$	1	1	1
$5:$	0	1	1
$6:$	0	1	1
$7:$	0	0	0
$8:$	0	0	0
$9:$	0	0	0

Graphs and matrices

Graphs and matrices

	v_{1}	Ev_{1}
$0:$	1	1
$1:$	1	1
$2:$	1	1
$3:$	1	1
$4:$	1	1
$5:$	0	0
$6:$	0	0
$7:$	0	0
$8:$	0	0
$9:$	0	0

Graphs and matrices

$0:$	0	0
$1:$	0	0
$2:$	0	0
$3:$	0	0
$4:$	0	0
$5:$	1	1
$6:$	1	1
$7:$	1	1
$8:$	1	1
$9:$	1	1

Graphs and matrices

$$
\begin{aligned}
\mathrm{E} & =\mathrm{D}^{-1} \mathrm{~W} \\
E_{i j} & =\frac{w_{i j}}{\sum_{k} w_{i k}}
\end{aligned}
$$

$0:$	0	0.7
$1:$	0	0.8
$2:$	1	0.6
$3:$	1	0.5
$4:$	1	0.6
$5:$	1	0.3
$6:$	1	0.2
$7:$	0	0.5
$8:$	0	0.5
$9:$	0	0.7

Graphs and matrices

$E=D^{-1} W$

Graphs and matrices

	\mathbf{v}_{1}	E_{1}
$0:$	1	1
$1:$	1	1
$2:$	1	1
$3:$	1	1
$4:$	1	1
$5:$	0	0
$6:$	0	0
$7:$	0	0.2
$8:$	0	0
$9:$	0	0

Graphs and matrices

$$
D^{-1} W y \approx y
$$

Define so that $y=D^{-\frac{1}{2}} z$

$$
\begin{gathered}
D^{-1} W D^{-\frac{1}{2}} z \approx D^{-\frac{1}{2}} z \\
\quad \Rightarrow D^{-\frac{1}{2}} W D^{-\frac{1}{2}} z \approx z \\
\Rightarrow\left(I-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}\right) z \approx 0
\end{gathered}
$$

Graphs and matrices

$$
\begin{gathered}
\Rightarrow\left(I-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}\right) z \approx 0 \\
\Rightarrow \mathcal{L} z \approx 0
\end{gathered}
$$

$$
\mathcal{L}=I-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}
$$

is called the
Normalized Graph
Laplacian

Graphs and matrices

$$
\mathcal{L}=I-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}
$$

- We want $\mathcal{L} z \approx 0$
- Trivial solution: all nodes of graph in one cluster, nothing in the other
- To avoid trivial solution, look for the eigenvector with the second smallest eigenvalue

$$
\begin{gathered}
\mathcal{L} z=\lambda z \\
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}
\end{gathered}
$$

- Find z s.t. $\mathcal{L} z=\lambda_{2} z$

Normalized cuts

- Approximate solution to normalized cuts
- Construct matrix W and D
- Construct normalized graph laplacian

$$
\mathcal{L}=I-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}
$$

- Look for the second smallest eigenvector

$$
\mathcal{L} z=\lambda_{2} z
$$

- Compute $y=D^{-\frac{1}{2}} z$
- Threshold y to get clusters
- Ideally, sweep threshold to get lowest N-cut value

More than 2 clusters

- Given graph, use N -cuts to get 2 clusters
- Each cluster is a graph
- Re-run N-cuts on each graph

Normalized cuts

- NP Hard
- But approximation using eigenvector of normalized graph laplacian
- Smallest eigenvector : trivial solution
- Second smallest eigenvector: good partition
- Other eigenvectors: other partitions
- An instance of "Spectral clustering"
- Spectrum = set of eigenvalues
- Spectral clustering = clustering using eigenvectors of (various versions of) graph laplacian

Images as graphs

- Each pixel is a node
- What is the edge weight between two nodes / pixels?
- F(i): intensity / color of pixel i
- X(i): position of pixel i

$$
w_{i j}=e^{\frac{-\|\boldsymbol{F}(i)-\boldsymbol{F}(j)\|_{2}^{2}}{\sigma_{I}}} * \begin{cases}e^{\frac{-\|\boldsymbol{X}(i)-\boldsymbol{X}(j)\|_{2}^{2}}{\sigma_{X}}} & \text { if }\|X(i)-X(j)\|_{2}<r \\ 0 & \text { otherwise },\end{cases}
$$

Computational complexity

- A 100×100 image has 10 K pixels
- A graph with 10K pixels has a 10K x 10K affinity matrix
- Eigenvalue computation of an $\mathrm{N} \times \mathrm{N}$ matrix is $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- Very very expensive!

Eigenvectors of images

- The eigenvector has as many components as pixels in the image

Eigenvectors of images

- The eigenvector has as many components as pixels in the image

(a)

(d)

(b)

(e)

(c)

(f)

Another example

$2^{\text {nd }}$ eigenvector

$3^{\text {rd }}$ eigenvector

$4^{\text {th }}$ eigenvector

Recursive N-cuts

$2^{\text {nd }}$ eigenvector

First partition

$2^{\text {nd }}$ eigenvector of $1^{\text {st }}$ subgraph

recursive partition

N -Cuts resources

- http://scikit-
learn.org/stable/modules/clustering.htm|\#spectralclustering
- https://people.eecs.berkeley.edu/~malik/papers/S M-ncut.pdf

Images as graphs

- Enhancement: edge between far away pixel, weight = 1 - magnitude of intervening contour

Eigenvectors of images

