Grouping



What is grouping?
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K-means

Input: set of data points, k
1. Randomly pick k points as means

2. Foriin [0, maxiters]:
1. Assign each point to nearest center

2. Re-estimate each center as mean of points assigned to
it



K-means - the math

Input: set of data points X, k
1. Randomly pick k points as means u;,i =1, ..., k

2. For iteration in [0, maxiters]:
1. Assign each point to nearest center
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2. Re-estimate each center as mean of points assigned to
it
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K-means - the math

* An objective function that must be minimized:

minz ||x’b — My, ’
MY p

 Every iteration of k-means takes a downward step:
* Fixes u and sets y to minimize objective
* Fixes y and sets u to minimize objective



K-means on image pixels




K-means on image pixels

Picture courtesy David One of the clusters from k-
Forsyth means



K-means on image pixels

* What is wrong?

* Pixel position
* Nearby pixels are likely to
belong to the same object

e Far-away pixels are likely to
belong to different objects

* How do we incorporate pixel
position?
* Instead of representing each
pixel as (r,g,b)
e Represent each pixel as
(r.8,b,x,y)




K-means on image pixels




The issues with k-means

* Captures pixel similarity
but
e Doesn’t capture continuity
* Captures proximity only
weakly

e Can merge far away objects
together

* Requires knowledge of k!




Oversegmentation and
superpixels

e We don’t know k. What is a safe choice?

 |dea: Use large k

e Can potentially break big objects, but will hopefully not
merge unrelated objects

 Later processing can decide which groups to merge
* Called superpixels



Regions <« Boundaries




Does Canny always work?




The aperture problem




The aperture problem




“Globalisation”




Images as graphs

* Each pixel is node

* Edge between “similar pixels”
* Proximity: nearby pixels are more similar
* Similarity: pixels with similar color are more similar

* Weight of edge = similarity




Segmentation is graph
partitioning




Segmentation is graph
partitioning

* Every partition “cuts” some edges
* |[dea: minimize total weight of edges cut!



Criterion: Min-cut?

* Min-cut carves out small isolated parts of the graph
* In image segmentation: individual pixels



Normalized cuts

e “Cut” = total weight of cut edges
* Small cut means the groups don’t “like” each other

* But need to normalize w.r.t how much they like
themselves

* “Volume” of a subgraph = total weight of edges
within the subgraph



Normalized cut

cut(4,4) cut(4,A)
vol(4) i vol(A)



Min-cut vs normalized cut

* Both rely on interpreting images as graphs

* By itself, min-cut gives small isolated pixels
 But can work if we add other constraints

* min-cut can be solved in polynomial time
* Dual of max-flow

e N-cut is NP-hard

* But approximations exist!



Random walk




Random walk




Random walk




Random walk

* Given that ghosts inhabit set A, how likely are they
to stay in A?



Random walk

* Given that ghosts inhabit set A, how likely are they
to stay in A?



Random walk

* Given that ghosts inhabit set A, how likely are they
to stay in A?



Random walk

* Given that ghosts inhabit set A, how likely are they
to stay in A?



Random walk

* Key idea: Partition should be such that ghost should
be likely to stay in one partition

* Normalized cut criterion is the same as this
* But how do we find this partition?



Graphs and matrices

* w(i,j) = weight between i and j (Affinity matrix)
* d(i) = degree of i =), ; w({, )

* D = diagonal matrix with d(i) on diagonal




Graphs and matrices

Si‘\ !




Graphs and matrices

E=DW



Graphs and matrices

* How do we represent a clustering?

* A label for N nodes
e 1if part of cluster A, 0 otherwise

* An N-dimensional vector!
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Graphs and matrices

* How do we represent a clustering?

* A label for N nodes
e 1if part of cluster A, 0 otherwise

* An N-dimensional vector!
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Graphs and matrices

* How do we represent a clustering?

* A label for N nodes
e 1if part of cluster A, 0 otherwise

* An N-dimensional vector!
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Graphs and matrices

E=D11W
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Graphs and matrices
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Graphs and matrices
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Graphs and matrices




Ev,

T 1 I «d =S O O

~ d d «+d4 «dH O O

Vq

SO <+ N mm < In ©

Graphs and matrices

N

O. o O
o O O
N 00 O 7

wij

E=D'W

Ef,;j —



Graphs and matrices
D™ Wy =~y
Definezsothat ¢y = [)™ 2 2
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Graphs and matrices
—~ (I—-D WD %)z~ 0
= Lz~0

L=]—-D 2WD 2
is called the

Normalized Graph
Laplacian



Graphs and matrices

L=T—D 2WD 3

* We want [,Z ~ ()

* Trivial solution: all nodes of graph in one cluster,
nothing in the other

* To avoid trivial solution, look for the eigenvector
with the second smallest eigenvalue

L2 = Az
AM < Ao < ...< AnN
* Findzst. Lz = Aoz



Normalized cuts

* Approximate solution to normalized cuts
* Construct matrix W and D
e Construct normalized graph laplacian
L=]—-D WDz
* Look for the second smallest eigenvector
Lz = )\22
« Compute Y = D_%Z

e Threshold y to get clusters
* |deally, sweep threshold to get lowest N-cut value



More than 2 clusters

* Given graph, use N-cuts to get 2 clusters

* Each cluster is a graph
e Re-run N-cuts on each graph



Normalized cuts

e NP Hard

* But approximation using eigenvector of normalized
graph laplacian
* Smallest eigenvector : trivial solution
* Second smallest eigenvector: good partition
» Other eigenvectors: other partitions

* An instance of “Spectral clustering”
e Spectrum = set of eigenvalues

e Spectral clustering = clustering using eigenvectors of
(various versions of) graph laplacian



Images as graphs

* Each pixel is a node
* What is the edge weight between two nodes /
pixels?
* F(i): intensity / color of pixel i
* X(i): position of pixel i

Fo-F@I2 [ IXOXOl , .
wi;=e 1 k¢ € K if [ X(4) — X(g)lly <7
L0 otherwise,




Computational complexity

* A 100 x 100 image has 10K pixels

* A graph with 10K pixels has a 10K x 10K affinity
matrix

 Eigenvalue computation of an N x N matrix is O(N3)
* Very very expensive!



Eigenvectors of images

* The eigenvector has as many components as pixels
in the image




Eigenvectors of images

* The eigenvector has as many components as pixels
in the image




Another example

th ai
2nd eigenvector 31 eigenvector 4™ eigenvector



Recursive N-cuts

2"d eigenvector

First partition 2"d eigenvector of 15t recursive partition
subgraph



N-Cuts resources

* http://scikit-
learn.org/stable/modules/clustering.html#spectral-
clustering

 https://people.eecs.berkeley.edu/~malik/papers/S
M-ncut.pdf




Images as graphs

* Enhancement: edge between far away pixel, weight
= 1 — magnitude of intervening contour




Eigenvectors of images




