
Grouping



What	is	grouping?



K-means

Input:	set	of	data	points,	k
1. Randomly	pick	k	points	as	means
2. For	i in	[0,	maxiters]:

1. Assign	each	point	to	nearest	center
2. Re-estimate	each	center	as	mean	of	points	assigned	to	

it



K-means	- the	math

Input:	set	of	data	points	𝑋,	k
1. Randomly	pick	k	points	as	means	𝜇#, 𝑖 = 1,… , 𝑘
2. For	iteration	in	[0,	maxiters]:

1. Assign	each	point	to	nearest	center

2. Re-estimate	each	center	as	mean	of	points	assigned	to	
it

yi = argmin
j

kxi � µjk2

µj =

P
i:yi=j xiP
i:yi=j 1



K-means	- the	math

• An	objective	function	that	must	be	minimized:

• Every	iteration	of	k-means	takes	a	downward	step:
• Fixes	𝜇 and	sets	𝑦 to	minimize	objective
• Fixes	𝑦 and	sets	𝜇 to	minimize	objective

min
µ,y

X

i

kxi � µyik2



K-means	on	image	pixels



K-means	on	image	pixels

Picture	courtesy	David	
Forsyth

One	of	the	clusters	from	k-
means



K-means	on	image	pixels

• What	is	wrong?
• Pixel	position
• Nearby	pixels	are	likely	to	
belong	to	the	same	object
• Far-away	pixels	are	likely	to	
belong	to	different	objects

• How	do	we	incorporate	pixel	
position?
• Instead	of	representing	each	
pixel	as	(r,g,b)
• Represent	each	pixel	as	
(r,g,b,x,y)



K-means	on	image	pixels



The	issues	with	k-means

• Captures	pixel	similarity	
but
• Doesn’t	capture	continuity
• Captures	proximity	only	
weakly
• Can	merge	far	away	objects	
together

• Requires	knowledge	of	k!



Oversegmentation and	
superpixels
• We	don’t	know	k.	What	is	a	safe	choice?
• Idea:	Use	large	k
• Can	potentially	break	big	objects,	but	will	hopefully	not	
merge	unrelated	objects
• Later	processing	can	decide	which	groups	to	merge
• Called	superpixels



Regions								Boundaries	



Does	Canny	always	work?



The	aperture	problem



The	aperture	problem



“Globalisation”



Images	as	graphs

• Each	pixel	is	node
• Edge	between	“similar	pixels”
• Proximity:	nearby	pixels	are	more	similar
• Similarity:	pixels	with	similar	color	are	more	similar

• Weight	of	edge	=	similarity



Segmentation	is	graph	
partitioning



Segmentation	is	graph	
partitioning

• Every	partition	“cuts”	some	edges
• Idea:	minimize	total	weight	of	edges	cut!



Criterion:	Min-cut?

• Min-cut	carves	out	small	isolated	parts	of	the	graph
• In	image	segmentation:	individual	pixels



Normalized	cuts

• “Cut”	=	total	weight	of	cut	edges
• Small	cut	means	the	groups	don’t	“like”	each	other
• But	need	to	normalize	w.r.t how	much	they	like	
themselves
• “Volume”	of	a	subgraph	=	total	weight	of	edges	
within	the	subgraph



Normalized	cut

𝑐𝑢𝑡(𝐴, �̅�)
𝑣𝑜𝑙(𝐴)

+	
𝑐𝑢𝑡(𝐴, �̅�)
𝑣𝑜𝑙(�̅�)



Min-cut	vs	normalized	cut

• Both	rely	on	interpreting	images	as	graphs
• By	itself,	min-cut	gives	small	isolated	pixels
• But	can	work	if	we	add	other	constraints

• min-cut	can	be	solved	in	polynomial	time
• Dual	of	max-flow

• N-cut	is	NP-hard
• But	approximations	exist!



Random	walk



Random	walk



Random	walk



Random	walk

• Given	that	ghosts	inhabit	set	A,	how	likely	are	they	
to	stay	in	A?



Random	walk

• Given	that	ghosts	inhabit	set	A,	how	likely	are	they	
to	stay	in	A?



Random	walk

• Given	that	ghosts	inhabit	set	A,	how	likely	are	they	
to	stay	in	A?



Random	walk

• Given	that	ghosts	inhabit	set	A,	how	likely	are	they	
to	stay	in	A?



Random	walk

• Key	idea:	Partition	should	be	such	that	ghost	should	
be	likely	to	stay	in	one	partition
• Normalized	cut	criterion	is	the	same	as	this
• But	how	do	we	find	this	partition?



Graphs	and	matrices

• w(i,j)	=	weight	between	i and	j	(Affinity	matrix)
• d(i)	=	degree	of	i =∑ 𝑤(𝑖, 𝑗)�

;

• D	=	diagonal	matrix	with	d(i)	on	diagonal

W DN

N N

N



Graphs	and	matrices
1

2

3

4

0

5

8 9

7

6

W



Graphs	and	matrices
1

2

3

4

0

5

8 9

7

6

W

E	=	D-1W

Eij =
wijP
k wik



Graphs	and	matrices

• How	do	we	represent	a	clustering?
• A	label	for	N	nodes
• 1	if	part	of	cluster	A,	0	otherwise

• An	N-dimensional	vector!

1

2

3

4

0

5

8 9

7

6

1

1

1

1

1

0

0

0

0

0

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v1



Graphs	and	matrices

• How	do	we	represent	a	clustering?
• A	label	for	N	nodes
• 1	if	part	of	cluster	A,	0	otherwise

• An	N-dimensional	vector!

1

2

3

4

0

5

8 9

7

6

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v1 v2



Graphs	and	matrices

• How	do	we	represent	a	clustering?
• A	label	for	N	nodes
• 1	if	part	of	cluster	A,	0	otherwise

• An	N-dimensional	vector!

1

2

3

4

0

5

8 9

7

6

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v1 v2

0

0

1

1

1

1

1

0

0

0

v3



Graphs	and	matrices
1

2

3

4

0

5

8 9

7

6

E	=	D-1W

1

1

1

1

1

0

0

0

0

0

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v1



Graphs	and	matrices

E	=	D-1W

1

1

1

1

1

0

0

0

0

0

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v1

Eij =
wijP
k wik

1

1

1

1

1

0

0

0

0

0

Ev1



Graphs	and	matrices

E	=	D-1W

0

0

0

0

0

1

1

1

1

1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v2

Eij =
wijP
k wik

0

0

0

0

0

1

1

1

1

1

Ev2



Graphs	and	matrices

E	=	D-1W

0

0

1

1

1

1

1

0

0

0

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v3

Eij =
wijP
k wik

0.7

0.8

0.6

0.5

0.6

0.3

0.2

0.5

0.5

0.7

Ev3



Graphs	and	matrices
1

2

3

4

0

5

8 9

7

6

E	=	D-1W



Graphs	and	matrices

E	=	D-1W

1

1

1

1

1

0

0

0

0

0

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

v1

Eij =
wijP
k wik

1

1

1

1

1

0

0

0.2

0

0

Ev1



Graphs	and	matrices

D�1Wy ⇡ y
y = D� 1

2 z

D�1WD� 1
2 z ⇡ D� 1

2 z

) D� 1
2WD� 1

2 z ⇡ z

Define	z	so	that

) (I �D� 1
2WD� 1

2 )z ⇡ 0



Graphs	and	matrices
) (I �D� 1

2WD� 1
2 )z ⇡ 0

) Lz ⇡ 0

L = I �D� 1
2WD� 1

2

is	called	the	
Normalized	Graph	

Laplacian



Graphs	and	matrices

• We	want
• Trivial	solution:	all	nodes	of	graph	in	one	cluster,	
nothing	in	the	other
• To	avoid	trivial	solution,	look	for	the	eigenvector	
with	the	second	smallest	eigenvalue

• Find	z	s.t.

L = I �D� 1
2WD� 1

2

Lz ⇡ 0

Lz = �z
�1 < �2 < . . . < �N

Lz = �2z



Normalized	cuts

• Approximate	solution	to	normalized	cuts
• Construct	matrix	W	and	D
• Construct	normalized	graph	laplacian

• Look	for	the	second	smallest	eigenvector

• Compute
• Threshold	y	to	get	clusters
• Ideally,	sweep	threshold	to	get	lowest	N-cut	value

L = I �D� 1
2WD� 1

2

Lz = �2z
y = D� 1

2 z



More	than	2	clusters

• Given	graph,	use	N-cuts	to	get	2	clusters
• Each	cluster	is	a	graph
• Re-run	N-cuts	on	each	graph



Normalized	cuts

• NP	Hard
• But	approximation	using	eigenvector	of	normalized	
graph	laplacian
• Smallest	eigenvector	:	trivial	solution
• Second	smallest	eigenvector:	good	partition
• Other	eigenvectors:	other	partitions

• An	instance	of	“Spectral	clustering”
• Spectrum	=	set	of	eigenvalues
• Spectral	clustering	=	clustering	using	eigenvectors	of	
(various	versions	of)	graph	laplacian



Images	as	graphs

• Each	pixel	is	a	node
• What	is	the	edge	weight	between	two	nodes	/	
pixels?
• F(i):	intensity	/	color	of	pixel	i
• X(i):	position	of	pixel	i



Computational	complexity

• A	100	x	100	image	has	10K	pixels
• A	graph	with	10K	pixels	has	a	10K	x	10K	affinity	
matrix
• Eigenvalue	computation	of	an	N	x	N	matrix	is	O(N3)
• Very	very	expensive!



Eigenvectors	of	images

• The	eigenvector	has	as	many	components	as	pixels	
in	the	image



Eigenvectors	of	images

• The	eigenvector	has	as	many	components	as	pixels	
in	the	image



Another	example

2nd eigenvector 3rd eigenvector 4th eigenvector



Recursive	N-cuts

2nd eigenvector

First	partition 2nd eigenvector	of	1st
subgraph

recursive	partition



N-Cuts	resources

• http://scikit-
learn.org/stable/modules/clustering.html#spectral-
clustering
• https://people.eecs.berkeley.edu/~malik/papers/S
M-ncut.pdf



Images	as	graphs

• Enhancement:	edge	between	far	away	pixel,	weight	
=	1	– magnitude	of	intervening	contour



Eigenvectors	of	images


