Grouping

What is grouping?

K-means

Input: set of data points, k

- 1. Randomly pick k points as means
- 2. For i in [0, maxiters]:
 - 1. Assign each point to nearest center
 - 2. Re-estimate each center as mean of points assigned to it

K-means - the math

Input: set of data points X, k

- 1. Randomly pick k points as means μ_i , i = 1, ..., k
- 2. For iteration in [0, maxiters]:
 - 1. Assign each point to nearest center

$$y_i = \arg\min_j \|x_i - \mu_j\|^2$$

2. Re-estimate each center as mean of points assigned to it

$$\mu_j = \frac{\sum_{i:y_i=j} x_i}{\sum_{i:y_i=j} 1}$$

K-means - the math

• An objective function that must be minimized:

$$\min_{\mu, y} \sum_{i} \|x_i - \mu_{y_i}\|^2$$

- Every iteration of k-means takes a downward step:
 - Fixes μ and sets y to minimize objective
 - Fixes y and sets μ to minimize objective

Picture courtesy David Forsyth

One of the clusters from kmeans

- What is wrong?
- Pixel position
 - Nearby pixels are likely to belong to the same object
 - Far-away pixels are likely to belong to different objects
- How do we incorporate pixel position?
 - Instead of representing each pixel as (r,g,b)
 - Represent each pixel as (r,g,b,x,y)

The issues with k-means

- Captures pixel similarity but
 - Doesn't capture continuity
 - Captures proximity only weakly
 - Can merge far away objects together
- Requires knowledge of k!

Oversegmentation and superpixels

- We don't know k. What is a safe choice?
- Idea: Use large k
 - Can potentially break big objects, but will hopefully not merge unrelated objects
 - Later processing can decide which groups to merge
 - Called *superpixels*

Regions - Boundaries

Does Canny always work?

The aperture problem

The aperture problem

"Globalisation"

Images as graphs

- Each pixel is node
- Edge between "similar pixels"
 - *Proximity:* nearby pixels are more similar
 - Similarity: pixels with similar color are more similar
- Weight of edge = similarity

Segmentation is graph partitioning

Segmentation is graph partitioning

- Every partition "cuts" some edges
- Idea: minimize total weight of edges cut!

Criterion: Min-cut?

- Min-cut carves out small isolated parts of the graph
- In image segmentation: individual pixels

Normalized cuts

- "Cut" = total weight of cut edges
- Small cut means the groups don't "like" each other
- But need to normalize w.r.t how much they like *themselves*
- "Volume" of a subgraph = total weight of edges within the subgraph

Normalized cut

Min-cut vs normalized cut

- Both rely on interpreting images as graphs
- By itself, min-cut gives small isolated pixels
 - But can work if we add other constraints
- min-cut can be solved in polynomial time
 - Dual of max-flow
- N-cut is NP-hard
 - But approximations exist!

- Key idea: Partition should be such that ghost should be likely to stay in one partition
- Normalized cut criterion is the same as this
- But how do we find this partition?

- w(i,j) = weight between i and j (Affinity matrix)
- d(i) = degree of i = $\sum_{j} w(i, j)$
- D = diagonal matrix with d(i) on diagonal

W

 $E_{ij} = \frac{w_{ij}}{\sum_k w_{ik}}$

5

- How do we represent a clustering?
- V_1 A label for N nodes • 1 if part of cluster A, 0 otherwise 0: 1 1: 1 An N-dimensional vector! 2: 1 3: 1 6 1 4: 1 7 2 5: 0 6: 3 0 7: 0 9 8 4 8: 0 5 9: 0 0

• How do we represent a clustering?

• How do we represent a clustering?

v ₁		Ev ₁
1		1
1		1
1		1
1		1
1		1
0		0
0		0
0		0
0		0
0		0
	v ₁ 1 1 1 1 1 0 0 0 0 0 0	<pre>v1</pre>

	V ₂	Ev ₂
0:	0	0
1:	0	0
2:	0	0
3:	0	0
4:	0	0
5:	1	1
6:	1	1
7:	1	1
8:	1	1
9:	1	1

	V ₃	Ev ₃
0:	0	0.7
1:	0	0.8
2:	1	0.6
3:	1	0.5
4:	1	0.6
5:	1	0.3
6:	1	0.2
7:	0	0.5
8:	0	0.5
9:	0	0.7

 $\mathsf{E} = \mathsf{D}^{-1}\mathsf{W}$

Graphs and matrices V_1 0: 1 1: 1 2: 1 3: 1 4: 1 5: 0 6: 0 7: 0 $E = D^{-1}W$ 8: 0 9: 0 $E_{ij} = \frac{w_{ij}}{\sum_k w_{ik}}$

 \mathbf{Ev}_1

1

1

1

1

1

0

0

0.2

0

0

$$D^{-1}Wy \approx y$$
 Define z so that $y = D^{-\frac{1}{2}}z$

$$D^{-1}WD^{-\frac{1}{2}}z \approx D^{-\frac{1}{2}}z$$
$$\Rightarrow D^{-\frac{1}{2}}WD^{-\frac{1}{2}}z \approx z$$
$$\Rightarrow (I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}})z \approx 0$$

Graphs and matrices $\Rightarrow (I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}})z \approx 0$ $\Rightarrow \mathcal{L}z \approx 0$

 $\mathcal{L} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$

is called the Normalized Graph Laplacian

$$\mathcal{L} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$$

- We want $\mathcal{L}z pprox 0$
- Trivial solution: all nodes of graph in one cluster, nothing in the other
- To avoid trivial solution, look for the *eigenvector* with the second smallest eigenvalue

$$\mathcal{L}z = \lambda z$$
$$\lambda_1 < \lambda_2 < \ldots < \lambda_N$$

• Find z s.t. $\mathcal{L}z = \lambda_2 z$

Normalized cuts

- Approximate solution to normalized cuts
- Construct matrix W and D
- Construct normalized graph laplacian $\mathcal{L} = I D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$
- Look for the second smallest eigenvector

$$\mathcal{L}z = \lambda_2 z$$

- Compute $y = D^{-\frac{1}{2}}z$
- Threshold y to get clusters
 - Ideally, sweep threshold to get lowest N-cut value

More than 2 clusters

- Given graph, use N-cuts to get 2 clusters
- Each cluster is a graph
 - Re-run N-cuts on each graph

Normalized cuts

- NP Hard
- But approximation using *eigenvector of normalized* graph laplacian
 - Smallest eigenvector : trivial solution
 - Second smallest eigenvector: good partition
 - Other eigenvectors: other partitions
- An instance of "Spectral clustering"
 - Spectrum = set of eigenvalues
 - Spectral clustering = clustering using eigenvectors of (various versions of) graph laplacian

Images as graphs

- Each pixel is a node
- What is the edge weight between two nodes / pixels?
 - F(i): intensity / color of pixel i
 - X(i): position of pixel i

$$w_{ij} = e^{\frac{-\|\boldsymbol{F}(i) - \boldsymbol{F}(j)\|_2^2}{\sigma_I}} * \begin{cases} e^{\frac{-\|\boldsymbol{X}(i) - \boldsymbol{X}(j)\|_2^2}{\sigma_X}} & \text{if } \|\boldsymbol{X}(i) - \boldsymbol{X}(j)\|_2 < r \\ 0 & \text{otherwise,} \end{cases}$$

Computational complexity

- A 100 x 100 image has 10K pixels
- A graph with 10K pixels has a 10K x 10K affinity matrix
- Eigenvalue computation of an N x N matrix is O(N³)
- Very very expensive!

Eigenvectors of images

• The eigenvector has as many components as pixels in the image

Eigenvectors of images

• The eigenvector has as many components as pixels in the image

(b)

(d)

(e)

(f)

Another example

2nd eigenvector

3rd eigenvector

4th eigenvector

Recursive N-cuts

2nd eigenvector

recursive partition

2nd eigenvector of 1st subgraph

First partition

N-Cuts resources

- <u>http://scikit-</u> <u>learn.org/stable/modules/clustering.html#spectral-</u> <u>clustering</u>
- <u>https://people.eecs.berkeley.edu/~malik/papers/S</u> <u>M-ncut.pdf</u>

Images as graphs

Enhancement: edge between far away pixel, weight
= 1 – magnitude of *intervening contour*

Eigenvectors of images

