Pyramids
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Gaussian pyramids
[Burt and Adelson, 1983]

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2X images (assuming N=2¥)
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level 0 (= original image)

e In computer graphics, a mip map [Williams, 1983]

Gaussian Pyramids have all sorts of applications in computer vision

Source: S. Seitz



Gaussian pyramids - Searching
over scales




Gaussian pyramids - Searching
over scales




The Gaussian Pyramid
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Gaussian pyramid and stack
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Source: Forsyth



Memory Usage
* What is the size of the pyramid?




Laplacian pyramid

Xpand (upsample + blur)
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Laplacian pyramid
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Reconstructing the image from a
_aplacian pyramid
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Source: Forsyth



Edge detection




Why edges?

* Resilience to lighting and color
 useful for recognition, matching patches across images




Why edges?

* Humans are sensitive to edges
* Convert a 2D image into a set of curves

— Extracts salient features of the scene, more compact



Why edges?

* Cue to shape and geometry
 useful for recognition, understanding 3D structure

Credit: Jitendra Malik

Credit: Attneave



Why edges?

* Grouping pixels into objects (“perceptual
organization”)




This lecture

* Edge detection in general
* Edge detection for grouping



Edges

* Edges are curves in the image, across which the
brightness changes “a lot”

e Corners/Junctions

Edward H. Adelson



Aside




Closeup of

edges



Closeup of edges

Source: D. Hoiem



Closeup of

edges




Closeup of edges

Source: D. Hoiem



Characterizing edges

e An edge is a place of rapid change in the image
intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
Source: L. Lazebnik extrema of derivative



Intensity profile
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Derivatives and convolution

e Differentiation is linear

Olaf(x) +bg(z))  Of(x)

_ ~,0g(x)
ox — ¢ ox -0 ox

e Differentiation is shift-invariant
e Derivative of shifted signal is shifted derivative

* Hence, differentiation can be represented as
convolution!



Image derivatives

* How can we differentiate a digital image F[x,y]?

— Option 1: reconstruct a continuous image, f, then
compute the derivative

— Option 2: take discrete derivative (finite difference)

of
x
How would you implement this as a linear filter?
of of.
ox dy

Source: S. Seitz



Image gradient

* The gradient of an image: Vf — [?):];’ g]yf]

The gradient points in the direction of most rapid increase in intensity
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The edge strength is given by the gradient magnitude:
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The gradient direction is given by:
_ —1(9f ,0f )
0 = tan ( Dy / 5

e how does this relate to the direction of the edge?
Source: Steve Seitz



Source: L. Lazebnik



With a little Gaussian noise
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Effects of noise
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Where is the edge?

Source: S. Seitz



Effects of noise

* Noise is high frequency
e Differentiation accentuates noise

d sin wx

dx
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Solution: smooth first

Sigma = 50
I I I I I I I I I
[ ' 5
c g
h = :
X g
......... l““.“.“l.““””.l'“““.”I““““”l”““““l”““.“'l.”“““—
600 800 1000 1200 1400 1600 1800 2000
c I I I I I I I I I
ke :
%k 5 :
f*h 3 ;
> g
C .
Q 3
© ] ] ] ] ] ] ] ] ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
c T T T T T T T T T
e : :
d 5 ' 5
—(f*h) § |
dr & ;
DO_ ........ i i i i i T . 12036005 —

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000

To find edges, look for peaks in %(f x h)

Source: S. Seitz



Associative property of convolution

e Differentiation is a convolution
e Convolution is associative: d d
e This saves us one operation:

Sigma = 50
T

0 200 400 600 800 1000 1200 1400 1600 1800 2000 Source: S. Seitz



2D edge detection filters
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Derivative of Gaussian filter

2 jAz

x-direction y-direction




FIGURE 5.3: The scale (i.e., o) of the Gaussian used in a derivative of Gaussian filter has
significant effects on the results. The three images show estimates of the derivative in the
x direction of an image of the head of a zebra obtained using a derivative of Gaussian
filter with o one pixel, three pixels, and seven pixels (left to right). Note how images at
a finer scale show some hair, the animal’s whiskers disappear at a medium scale, and the
fine stripes at the top of the muzzle disappear at the coarser scale.



Two Dimensional Gaussian

1 -3
Anisotropic: G, o (z.y) = -
nisotropic 20y (T3 Y) 27mxaye
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[sotropic: G, (z,y) = e 207
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Oriented Gaussian First and Second Derivatives
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Grouping



What is grouping?
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Why grouping?

* Pixels property of sensor, not world

* Reasoning at object level (might) make things easy:
e objects at consistent depth
* objects can be recognized
* objects move as one

"I stand at the window and see a house, trees,
sky. Theoretically I might say there were 327
brightnesses and nuances of colour. Do I have
"327"? No. I have sky, house, and trees."
Max Wertheimer



Regions <« Boundaries




s grouping well-defined?

* Depends on purpose
* Object parts

* Background
segmentation

fe




s grouping well-defined?

Perceptual organization forms a tree:

Image
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D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its Application
to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV, 2001



How do we group things?

e Gestalt principles
* Principle of proximity
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https://courses.lumenlearning.com/wsu-sandbox/chapter/gestalt-principles-of-perception/



How do we group things?

* Gestalt principles
* Principle of similarity
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https://courses.lumenlearning.com/wsu-sandbox/chapter/gestalt-principles-of-perception/



How do we group things?

* Gestalt principles
* Principle of continuity and closure
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https://courses.lumenlearning.com/wsu-sandbox/chapter/gestalt-principles-of-perception/



How do we group things?

* Gestalt principles
* Principle of common fate



Gestalt principles in the context of
Images

* Principle of proximity: nearby pixels are part of the
same object

* Principle of similarity: similar pixels are part of the
same object
* Look for differences in color, intensity, or texture across
the boundary
* Principle of closure and continuity: contours are
likely to continue

* High-level knowledge?



Regions <« Boundaries




Designing a good boundary
detector

* Differences in color, intensity, or texture across the
boundary

* Continuity and closure
* High-level knowledge



Criteria for a good boundary detector

e Criteria for a good boundary detector:
* Good detection: Fire only on real edges, not anywhere else
* Good localization

* the edges detected must be as close as possible to the
true edges

* the detector must return one point only for each true
edge point

Source: L. Fei-Fei



Canny edge detector

e The classic edge detector
e Baseline for all later work on grouping

e Theoretical model: step-edges corrupted by
additive Gaussian noise

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

22,000 citations!
Source: L. Fei-Fei



original image



Compute Gradients (DoG)
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X-Derivative of Gaussian Y-Derivative of Gaussian



Gradient magnitude and orientation

* Orientation is undefined at pixels with O gradient

Orientation
theta = numpy.arctan2(gy, gx)



Non-maximum suppression for each

orientation
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Source: D. Forsyth

At g, we have a
maximum if the value
is larger than those at
both p and atr.
Interpolate to get
these values.




Before Non-max Suppression




After Non-max Suppression




Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

* Do connected components, starting from strong edge pixels




Final Canny Edges




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

Non-maximum suppression:
* Thin multi-pixel wide “ridges” down to single pixel
width
4. Thresholding and linking (hysteresis):

* Define two thresholds: low and high

* Use the high threshold to start edge curves and the low
threshold to continue them

Source: D. Lowe, L. Fei-Fei



Does Canny always work?




The challenges of edge detection

 Low-contrast boundaries




