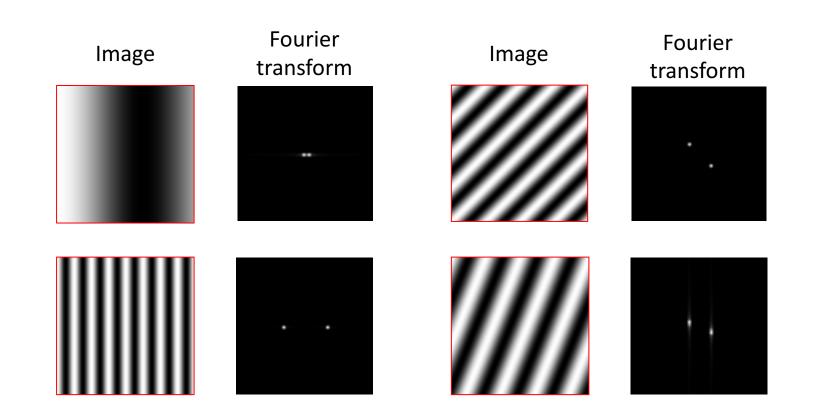
Fourier transforms and rescaling

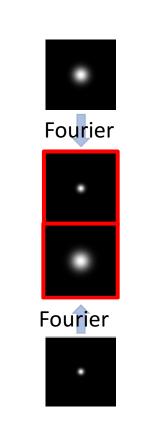
Fourier transforms



Low-pass filtering

*

*

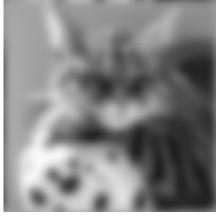




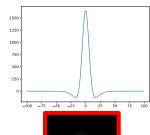
High-pass filtering

Band-pass filtering

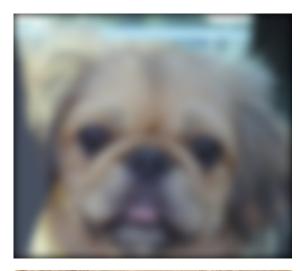




•

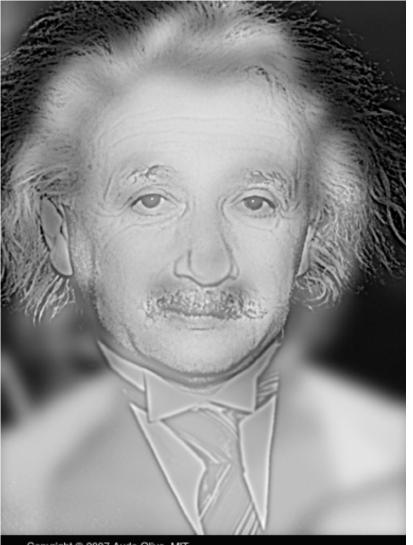


Hybrid images (PA1)



Hybrid images (PA1)

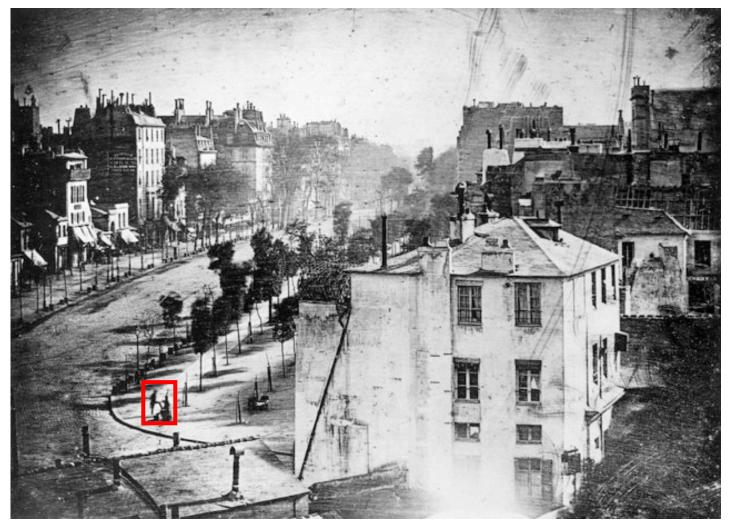
Hybrid images (PA1)



Copyright © 2007 Aude Oliva, MIT

Resizing and resampling

Let's enhance!



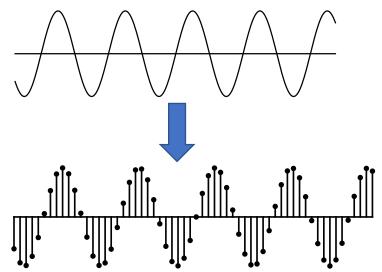
Louis Daguerre, 1838

Let's enhance!

- When is enhancement possible?
- How can we model what happens when we upsample or downsample an image?
- Resizing up or down very common operation
 - Searching across scales
 - applications have different memory/quality tradeoffs

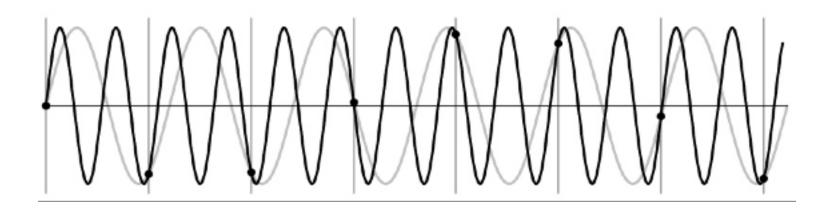
What is a (digital) image?

- True image is a function from R² to R
- Digital image is a sample from it
- 1D example:



 To enhance, we need to recover the original signal and sample again

Undersampling



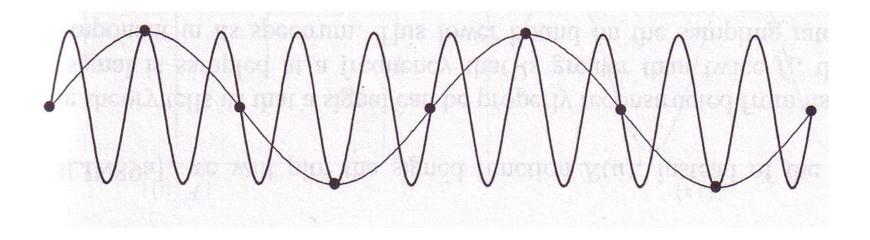
© Kavita Bala, Computer Science, Cornell University

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - *aliasing*: signals "traveling in disguise" as other frequencies

Aliasing

 When sampling is not adequate, impossible to distinguish between low and high frequency signal



© Kavita Bala, Computer Science, Cornell University

Aliasing in time

Aliasing in time

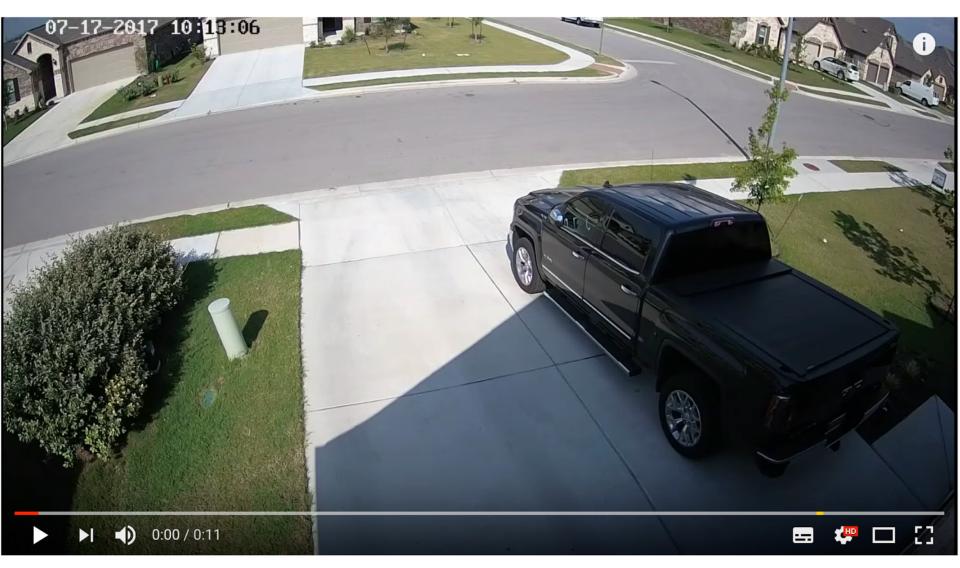


Image Scaling

What happens if we naively upsample?

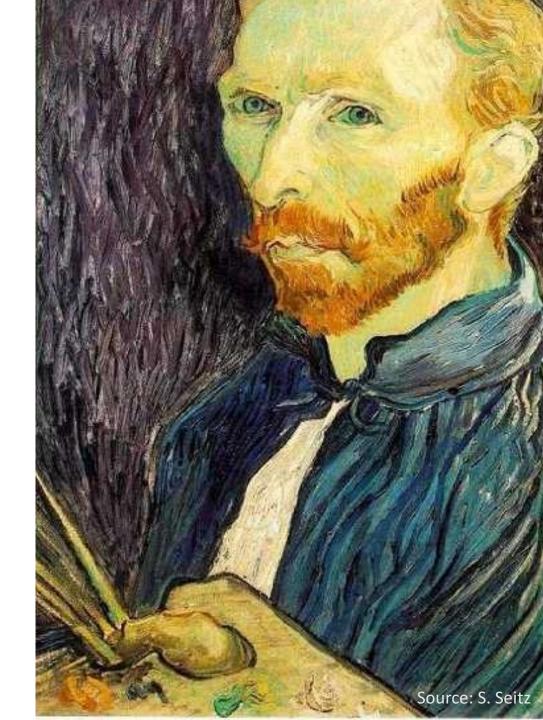
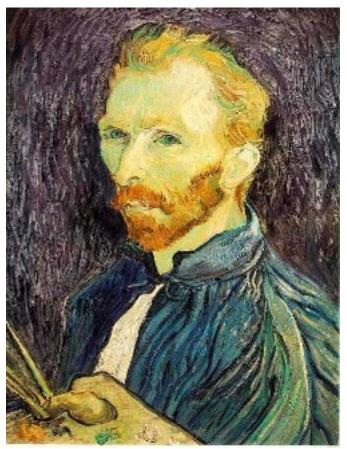


Image sub-sampling

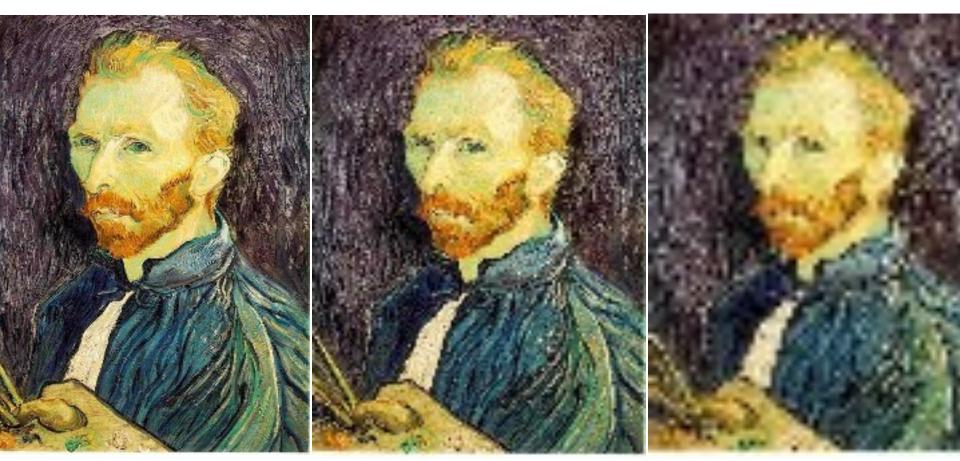


Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/4

1/16

Image sub-sampling



1/2

1/4 (2x zoom)

1/16 (4x zoom)

Why does this look so crufty? Aliasing!

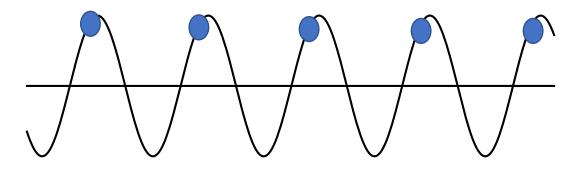
Source: S. Seitz

Image sub-sampling

Point sampling in action

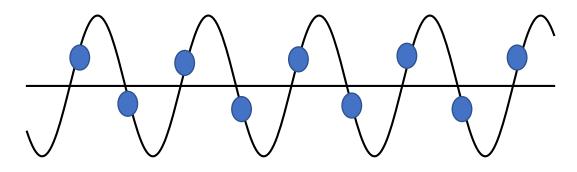
How many samples do we need?

• 1 sample per time period is too less:



How many samples do we need?

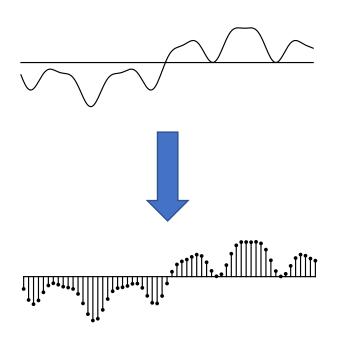
• 2 samples per time-period is enough



- Nyquist sampling theorem: Need to sample at least 2 times the frequency
- General signals? Need to sample at least 2 times the maximum frequency

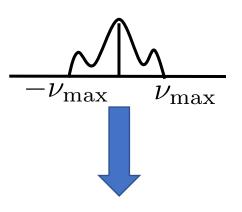
Nyquist sampling: why?

Spatial domain

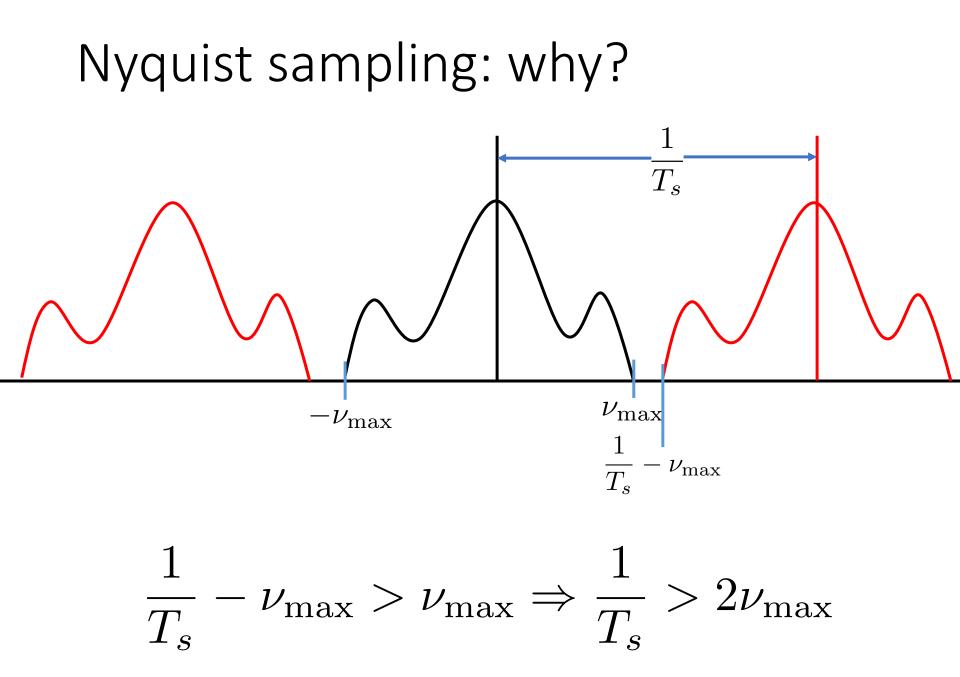


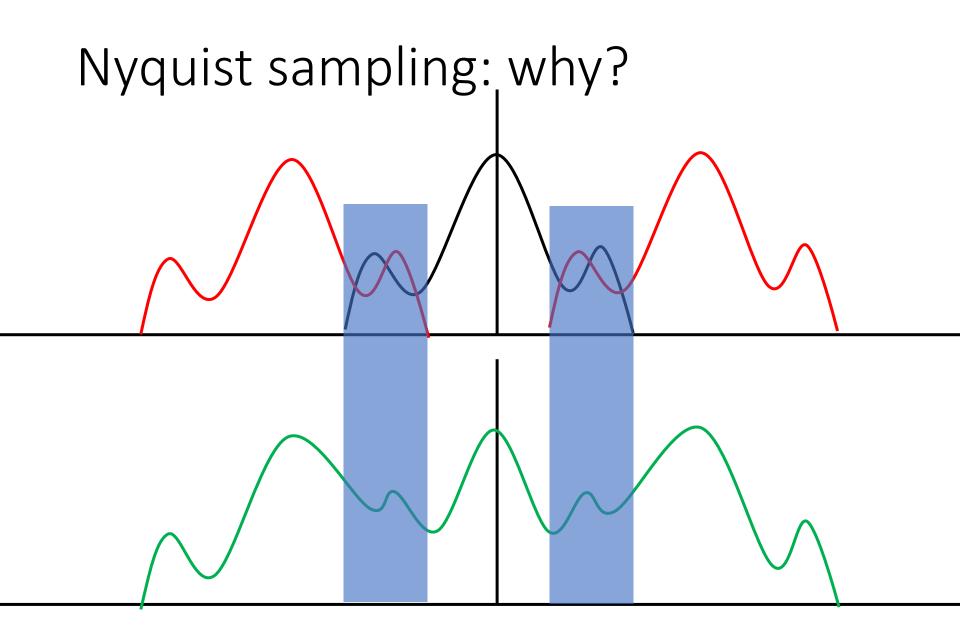
Sampling = Keep values at $t = kT_s$, make everything else 0

Frequency domain



Sampling = Make frequency domain periodic with period $\nu = 1/T_s$ by making copies



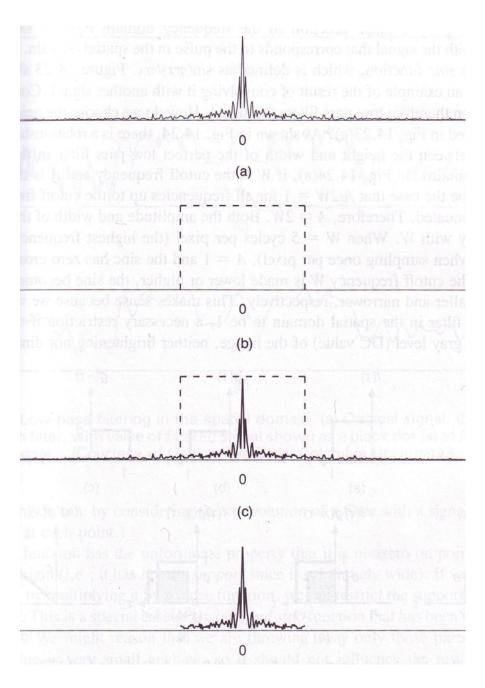


Aliasing and downsampling

- Nyquist says must sample at at least twice maximum frequency
- When downsampling by a factor of two
 - Original image has frequencies that are too high

- How can we fix this?
- Eliminate them before sampling!
 - Convert to frequency space
 - Multiply with low-pass filter

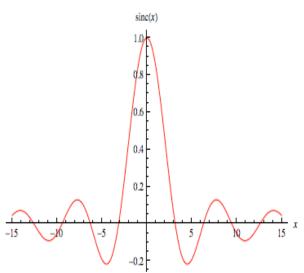
Eliminating High Frequencies



© Kavita Bala, Computer Science, Cornell University

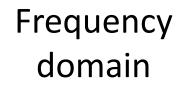
Process

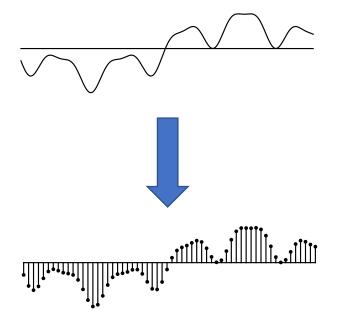
- Can we do this in spatial domain?
 - Yes!
- Multiplication in frequency domain
 = convolution in spatial domain
- Box filter in frequency domain = sinc in spatial domain
- Multiplication with box filter in frequency domain = convolution with sinc filter in spatial domain



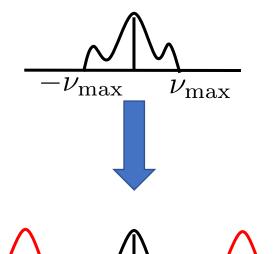
Reconstruction from samples

Spatial domain

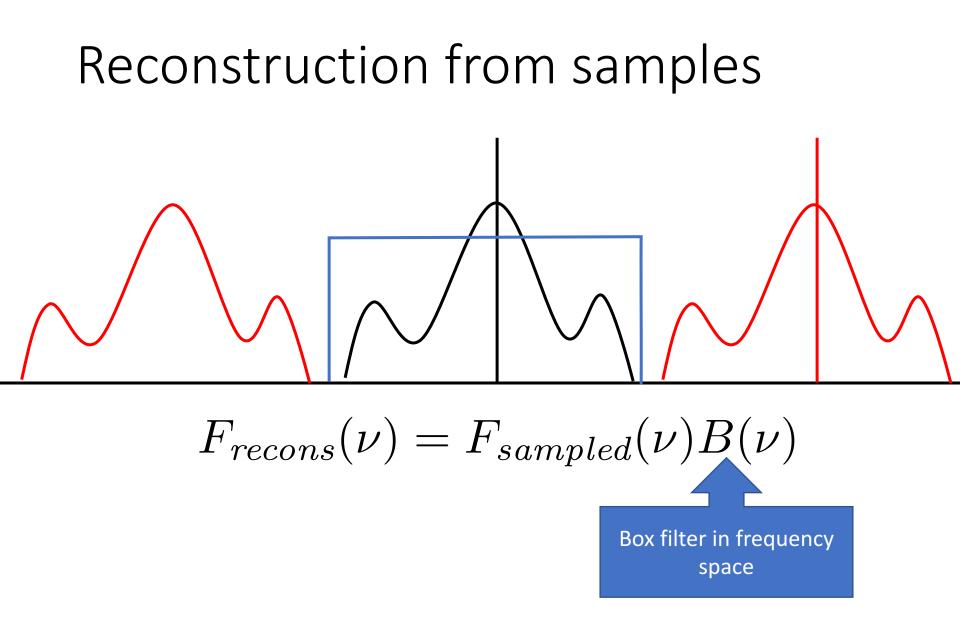




Sampling = Keep values at $t = kT_s$, make everything else 0



Sampling = Make frequency domain periodic with period $\nu = 1/T_s$ by making copies

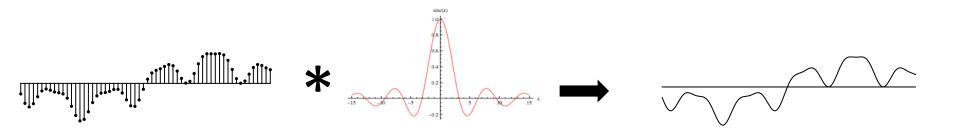


Reconstruction from samples $F_{recons}(\nu) = F_{sampled}(\nu)B(\nu)$

- Multiplication in frequency domain = convolution in spatial domain
- Box filter in frequency domain = sinc filter in spatial domain
- Convolve sampled signal with sinc filter to reconstruct

Reconstruction from samples

- "Sampled signal" is non-zero at sample points and 0 everywhere else
 - i.e., has holes



Recap: subsampling and reconstruction

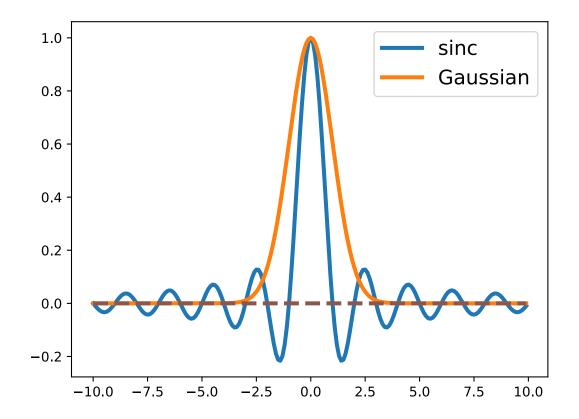
Subsampling

- Convolve with sinc filter to eliminate high frequencies
- Sample by picking only values at sample points

Reconstruction

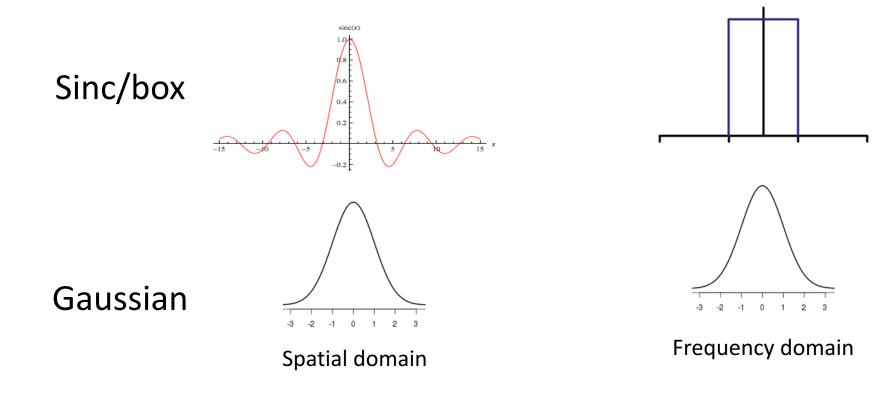
- Start with sampled signal (0 at non-sample points)
- 2. Convolve with sinc to reconstruct

Sinc is annoying



Sinc and Gaussian

- Sinc is annoying: infinite spatial extent
- Use Gaussian instead!



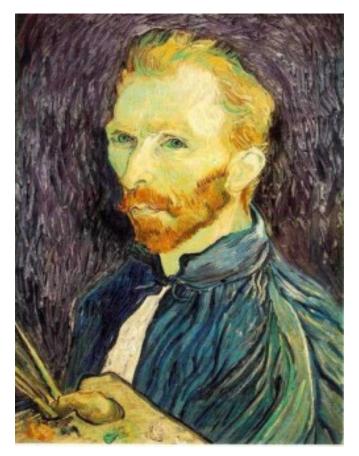
Subsampling images

- Step 1: Convolve with Gaussian to eliminate high frequencies
- Step 2: Drop unneeded pixels

Subsampling without removing high frequencies

Subsampling after removing high frequencies

Subsampling images correctly



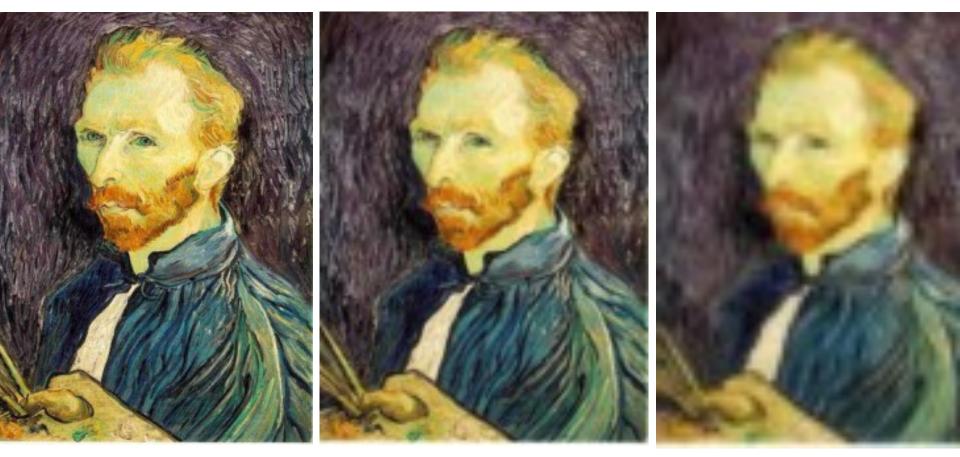
G 1/8

G 1/4

Gaussian 1/2

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering

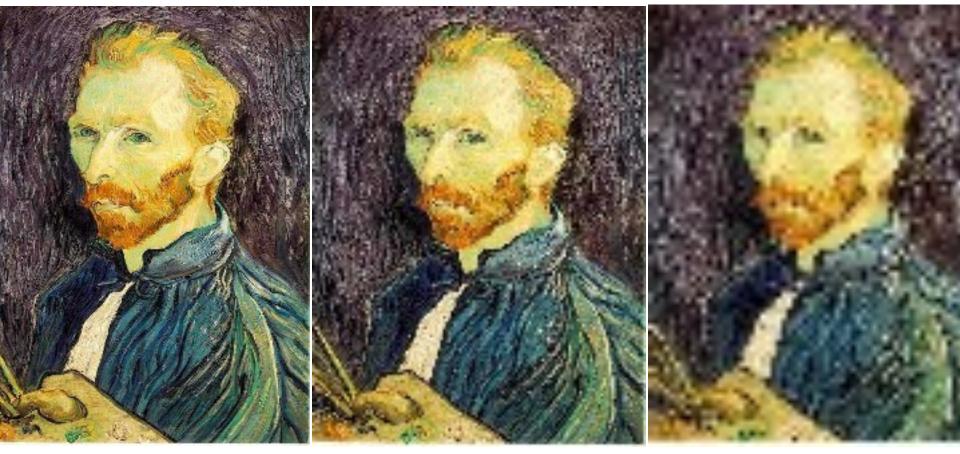


Gaussian 1/2

G 1/8

• Solution: filter the image, *then* subsample

Compare with...



1/2

1/4 (2x zoom)

1/8 (4x zoom)

Upsampling images

Step 1: blow up to original size with 0's in between

Upsampling images

Step 2: Convolve with Gaussian

Take-away

- Subsampling causes aliasing
 - High frequencies masquerading as low frequencies
- Remove low frequencies by blurring!
 - Ideal: sinc
 - Common: Gaussian
- When upsampling, reconstruct missing values by convolution
 - Ideal: sinc
 - Common: Gaussian

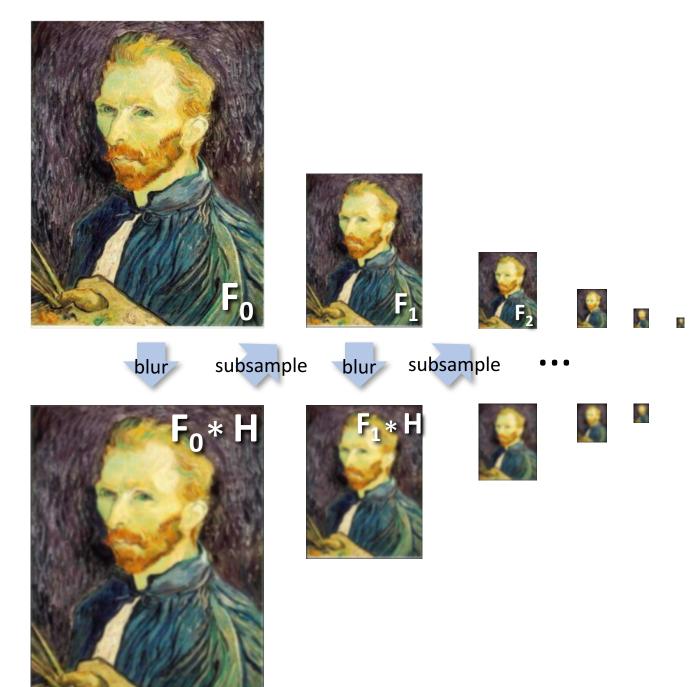
So... can we enhance?

- Nyquist theorem limits frequencies we can reconstruct from subsampled image
- Can only reconstruct max sampling frequency/2
- Sorry CSI!

Pyramids

Gaussian pre-filtering

 Solution: filter the image, then subsample



Gaussian pyramid

subsample

le blur

subsample

F₀*H

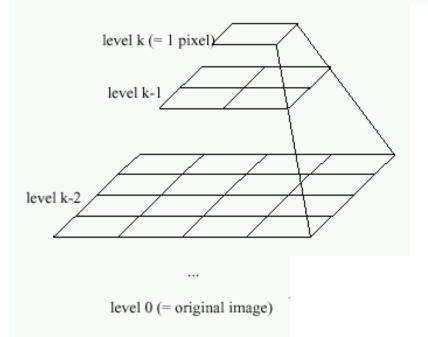
2

.

20

Gaussian pyramids [Burt and Adelson, 1983]

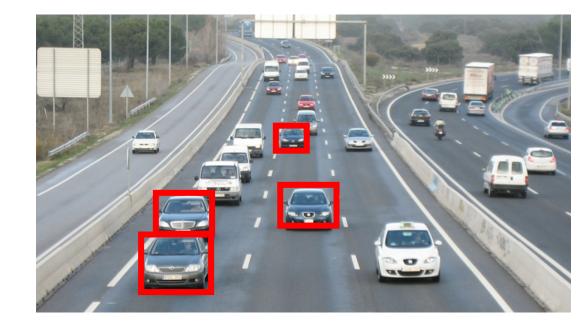
Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)



• In computer graphics, a *mip map* [Williams, 1983]

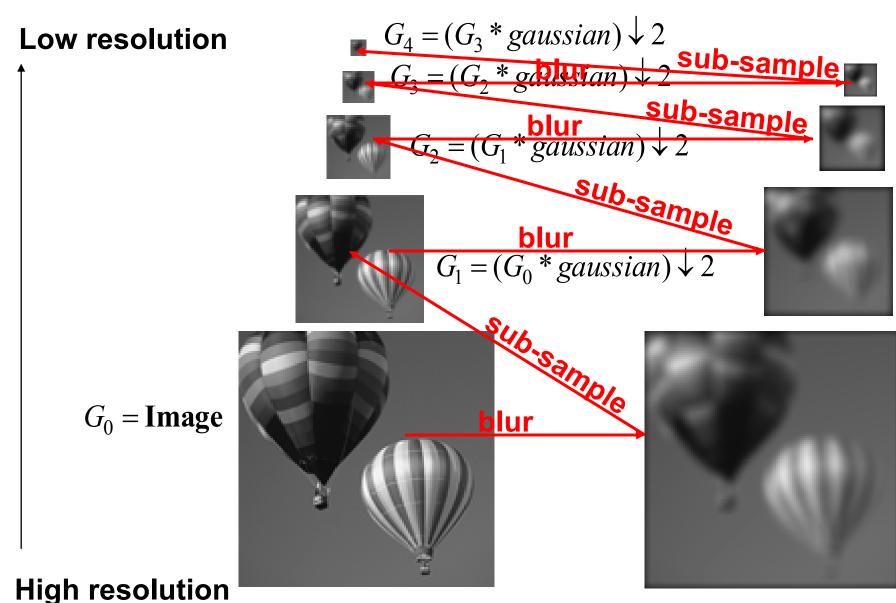
Gaussian Pyramids have all sorts of applications in computer vision

Gaussian pyramids - Searching over scales

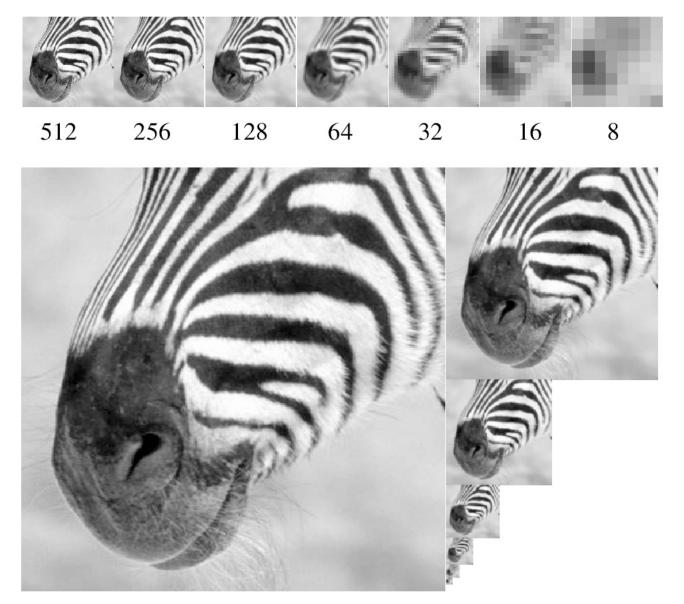


Gaussian pyramids - Searching over scales

The Gaussian Pyramid



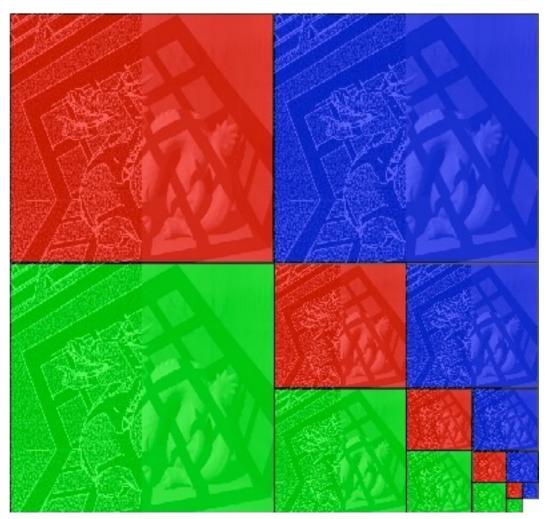
Gaussian pyramid and stack

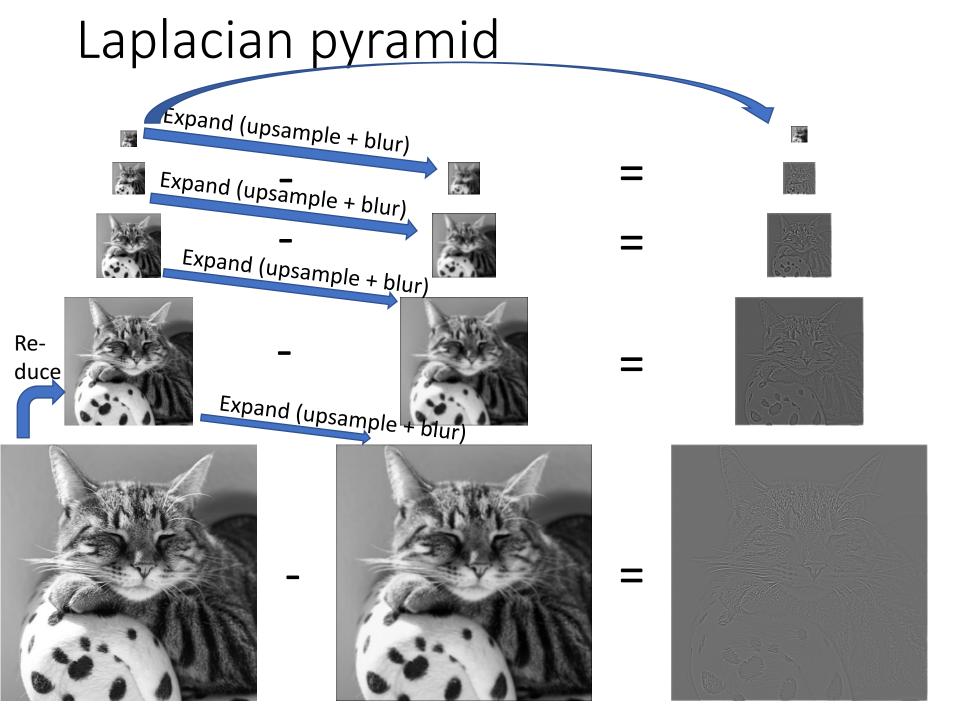


Source: Forsyth

Memory Usage

• What is the size of the pyramid?





$$L_4 = G_4 = G_4 = L_3 = G_3 - expand(G_4) =$$

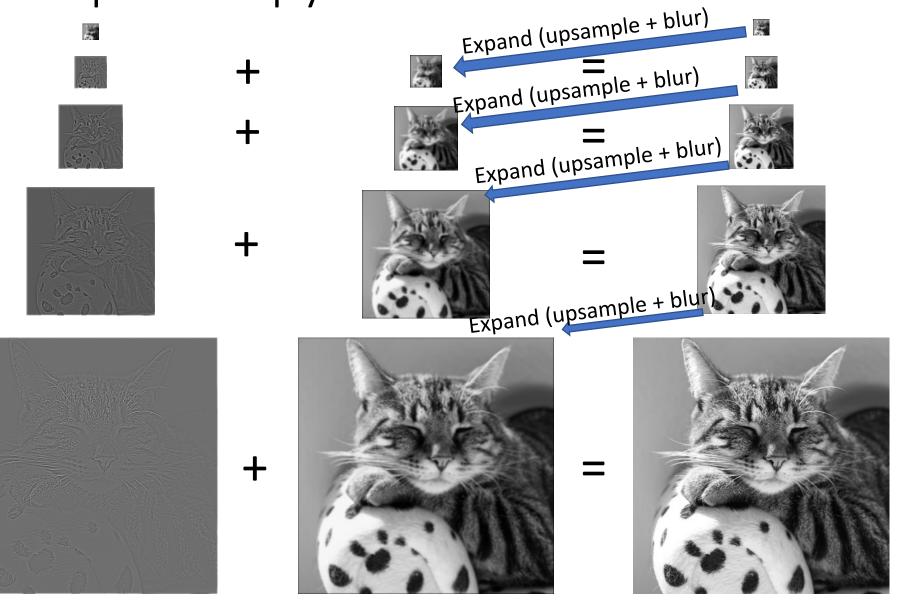
$$L_2 = G_2 - expand(G_3) =$$

$$L_1 = G_1 - expand(G_2) =$$

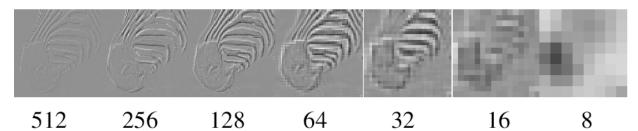
$$expand(G_2) =$$

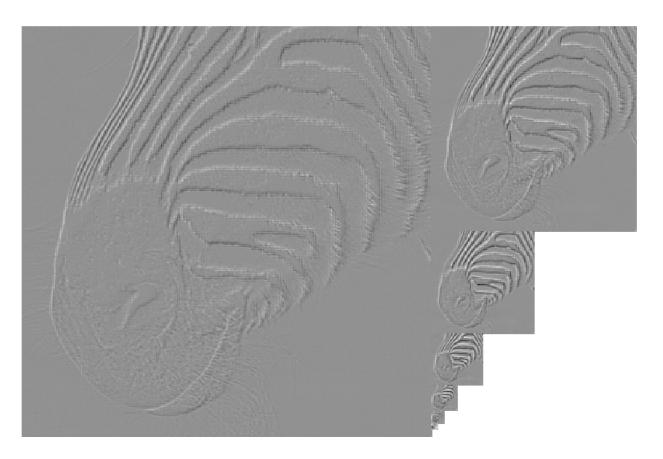
$$L_0 = G_0 - expand(G_1) =$$

Reconstructing the image from a Laplacian pyramid



Laplacian pyramid





Source: Forsyth