Fourier transforms and
rescaling
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Low-pass filtering
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High-pass filtering




Band-pass filtering




Hybrid images (PA1)
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Hybrid images (PA1)
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Resizing and resampling



Let’s enhance!

Louis Daguerre, 1838



Let’s enhance!

* When is enhancement possible?

* How can we model what happens when we
upsample or downsample an image?

* Resizing up or down very common operation
e Searching across scales
 applications have different memory/quality tradeoffs



What is a (digital) image?

* True image is a function from R? to R
* Digital image is a sample from it
* 1D example:
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* To enhance, we need to recover the original signal
and sample again



Undersampling
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Undersampling

 What if we “missed” things between the samples?

* Simple example: undersampling a sine wave
e unsurprising result: information is lost
e surprising result: indistinguishable from lower frequency
 also was always indistinguishable from higher frequencies
* dliasing: signals “traveling in disguise” as other frequencies



Aliasing

* When sampling is not adequate, impossible to
distinguish between low and high frequency
signal
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Aliasing in time
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Aliasing in time
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Image Scaling

What happens if we naively
upsample?




Image sub-sampling

Throw away every other row and
column to create a 1/2 size image

- called image sub-sampling
Source: S. Seitz



Image sub-sampling
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Why does this look so crufty? Aliasing!

Source: S. Seitz



Image sub-sampling

Source: F. Durand



Point sampling
In action




How many samples do we need?

* 1 sample per time period is too less:
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How many samples do we need?

e 2 samples per time-period is enough
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* Nyquist sampling theorem: Need to sample at least
2 times the frequency

* General signals? Need to sample at least 2 times
the maximum frequency



Nyquist sampling: why?

Spatial domain Frequency
domain
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Sampling = Keep values at Sampling = Make frequency
t = kT,, make everything domain periodic with period
else O v = 1/T; by making copies



Nyquist sampling: why?
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Nyquist sampling: why?




Aliasing and downsampling

* Nyquist says must sample at at least twice
maximum frequency

* When downsampling by a factor of two
* Original image has frequencies that are too high

* How can we fix this?

* Eliminate them before sampling!
 Convert to frequency space
* Multiply with low-pass filter
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Process

* Can we do this in spatial domain?

* Yes!
* Multiplication in frequency domain
= convolution in spatial domain it
* Box filter in frequency domain =
in spatial domain
* Multiplication with box filterin .~ | [ R
frequency domain = convolution 7 ) _ e

with in spatial domain



Reconstruction from samples

Spatial domain

VAV
M\/\/

|
gy ™1

Sampling = Keep values at
t = kT,, make everything
else 0

Frequency
domain

Y\

_Vmax Vmax

!

NAYWY/\YWYAY,

Sampling = Make frequency
domain periodic with period
v = 1/T; by making copies



Reconstruction from samples
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Box filter in frequency
space




Reconstruction from samples
Frecons(y) — Fsampled(V)B(V)

* Multiplication in frequency domain = convolution in
spatial domain

* Box filter in frequency domain = sinc filter in spatial
domain

* Convolve sampled signal with sinc filter to
reconstruct



Reconstruction from samples

e “Sampled signal” is non-zero at sample points and
0 everywhere else

* i.e., has holes




Recap: subsampling and
reconstruction

Subsampling Reconstruction

1. Convolve with sinc 1. Start with sampled
filter to eliminate signal (O at non-
high frequencies sample points)

2. Sample by picking 2. Convolve with sinc to
only values at sample reconstruct

points



SINc IS annoying
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Sinc and Gaussian

* Sinc is annoying: infinite spatial extent
* Use Gaussian instead!

Sinc/box
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Gaussian Tl T,

Spatial domain Frequency domain



Subsampling images

 Step 1: Convolve with Gaussian to eliminate high
frequencies

 Step 2: Drop unneeded pixels

Subsampling without removing Subsampling after removing
high frequencies high frequencies



Subsampling images correctly

Gaussian 1/2

e Solution: filter the image, then subsample

Source: S. Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2 G1/4 G 1/8

e Solution: filter the image, then subsample

Source: S. Seitz



Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Source: S. Seitz



Upsampling images

Step 1: blow up to
original size with O’s
in between




Upsampling images

Step 2: Convolve with
Gaussian




Take-away

e Subsampling causes aliasing
* High frequencies masquerading as low frequencies

 Remove low frequencies by blurring!
e |deal: sinc
* Common: Gaussian

* When upsampling, reconstruct missing values by
convolution

e |deal: sinc
e Common: Gaussian



So... can we enhance?

* Nyquist theorem limits frequencies we can
reconstruct from subsampled image

* Can only reconstruct max sampling frequency/2
* Sorry CSl!



Pyramids



Gaussian
ore-filtering

e Solution: filter
the image, then
subsample
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Gaussian pyramids
[Burt and Adelson, 1983]

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2X images (assuming N=2¥)

level k (= 1 pixle\
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level 0 (= original image)

e In computer graphics, a mip map [Williams, 1983]

Gaussian Pyramids have all sorts of applications in computer vision

Source: S. Seitz



Gaussian pyramids - Searching
over scales




Gaussian pyramids - Searching
over scales




The Gaussian Pyramid
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Gaussian pyramid and stack
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Source: Forsyth



Memory Usage
* What is the size of the pyramid?




Laplacian pyramia

Xpand (upsample + blur)




Laplacian pyramid

L4= 64: 4
L, = G5 - expand(G,) = =
L, =G, - expand(G,) = P

L, = G, - expand(G,) = .

L, = G, - expand(G,) =
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Source: Forsyth



