## Images have structure at various scales





#### Frequency

- *Frequency* of a signal is how fast it changes
  - Reflects scale of structure



## A combination of frequencies 0.1 X + 0.3 X + 0.5 X =

#### Fourier transform

- Can we figure out the canonical single-frequency signals that make up a complex signal?
  - Yes!
- Can *any* signal be decomposed in this way?
  - Yes!

# Fourier transform for periodic signals

- Suppose x is periodic with period T
- All components must be periodic with period T/k for some integer k
  - Only frequencies are of the form k/T
- Thus:



Given a signal x(t), Fourier transform gives us the coefficients a<sub>k</sub> (we will denote these as X[k])

# Fourier transform for aperiodic signals

- What if signal is not periodic?
- Can *still* decompose into sines and cosines!
- But no restriction on frequency
- Now need a *continuous space* of frequencies

$$x(t) = \int_{-\infty}^{\infty} X(\nu) e^{i2\pi\nu t} d\nu \, \, {}^{\text{"Pure"}}_{\text{signal}}$$

• Fourier transform gives us the *function X(v)* 

#### Fourier transform

$$x(t) = \int_{-\infty}^{\infty} X(\nu) e^{i2\pi\nu t} d\nu$$
$$X(\nu) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi\nu t} dt$$

Note: X can in principle be complex: we often look at the magnitude |X(v)|



#### Why is there a peak at 0?



#### Fourier transform

$$\begin{aligned} x(t) &= \int_{-\infty}^{\infty} X(\nu) e^{i2\pi\nu t} d\nu \\ X(\nu) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi\nu t} dt \end{aligned}$$

#### Dual domains

- Signal: time domain (or spatial domain)
- Fourier Transform: Frequency domain
  - Amplitudes are called spectrum
- For any transformations we do in time domain, there are corresponding transformations we can do in the frequency domain
- And vice-versa

#### Dual domains

 Convolution in time domain = Point-wise multiplication in frequency domain

$$\begin{split} h &= f \ast g \\ H &= FG \\ H(\nu) &= F(\nu)G(\nu) \end{split}$$

• *Convolution* in frequency domain = *Point-wise multiplication* in time domain

#### Proof (if curious)

$$\begin{split} H(\nu) &= \int_{-\infty}^{\infty} h(t)e^{-i2\pi\nu t}dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(t-x)dxe^{-i2\pi\nu t}dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)e^{-i2\pi\nu x}g(t-x)e^{-i2\pi\nu (t-x)}dxdt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)e^{-i2\pi\nu x}g(u)e^{-i2\pi\nu u}dxdu \\ &= \int_{-\infty}^{\infty} f(x)e^{-i2\pi\nu x}dx \int_{-\infty}^{\infty} g(u)e^{-i2\pi\nu u}du \\ &= F(\nu)G(\nu) \end{split}$$

#### Properties of Fourier transforms

| Property           | Signal              |                   | Transform                     |
|--------------------|---------------------|-------------------|-------------------------------|
| superposition      | $f_1(x) + f_2(x)$   |                   | $F_1(\omega) + F_2(\omega)$   |
| shift              | $f(x-x_0)$          |                   | $F(\omega)e^{-j\omega x_0}$   |
| reversal           | f(-x)               |                   | $F^*(\omega)$                 |
| convolution        | f(x) * h(x)         |                   | $F(\omega)H(\omega)$          |
| correlation        | $f(x)\otimes h(x)$  |                   | $F(\omega)H^*(\omega)$        |
| multiplication     | f(x)h(x)            |                   | $F(\omega) * H(\omega)$       |
| differentiation    | f'(x)               |                   | $j\omega F(\omega)$           |
| domain scaling     | f(ax)               |                   | $1/aF(\omega/a)$              |
| real images        | $f(x) = f^*(x)$     | $\Leftrightarrow$ | $F(\omega) = F(-\omega)$      |
| Parseval's Theorem | $\sum_{x} [f(x)]^2$ | =                 | $\sum_{\omega} [F(\omega)]^2$ |

#### Back to 2D images

- Images are 2D signals
- Discrete, but consider as samples from continuous function
- Signal: f(x,y)
- Fourier transform F(v<sub>x</sub>, v<sub>y</sub>): contribution of a "pure" signal with frequency v<sub>x</sub> in x and v<sub>y</sub> in y

#### Back to 2D images





#### Signals and their Fourier transform

- Spatial
  - Sine

- Frequency
  - Impulse

Gaussian

• Gaussian

• Box

• Sinc





#### The Gaussian special case

• Fourier transform of a Gaussian is a gaussian





## Sharp discontinuities require very high frequencies



### Duality

$$\begin{aligned} x(t) &= \int_{-\infty}^{\infty} X(\nu) e^{i2\pi\nu t} d\nu \\ X(\nu) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi\nu t} dt \end{aligned}$$

- Since Fourier and inverse Fourier look so much alike:
  - Fourier transform of sinc is box
  - Fourier transform of impulse is sine

# Why talk about Fourier transforms?

- Convolution is point-wise multiplication in frequency space
  - Analyze which frequency components a particular filter lets through, e.g., *low-pass, high-pass* or *band-pass* filters
  - Leads to fast algorithms for convolution with large filters: Fast FFT

### Why talk about Fourier transforms

- Frequency space reveals structure at various scales
  - Noise is high-frequency
  - "Average brightness" is low-frequency
- Useful to understand how we resize/resample images
  - Sampling causes information loss
  - What is lost exactly?
  - What can we recover?

#### Fourier transforms from far away

- Fourier transforms are basically a "change of basis"
- Instead of representing image as "the value of each pixel",
- Represent image as "how much of each frequency component"
- "Frequency components" are intuitive: slowlychanging or fast-changing images

Hi, Dr. Elizabeth? Yeah, vh... I accidentally took the Fourier transform of my cat... Meow!

"The cat has some serious periodic components." https://xkcd.com/26/

### Resizing and resampling

#### Let's enhance!



Louis Daguerre, 1838

#### Let's enhance!

- When is enhancement possible?
- How can we model what happens when we upsample or downsample an image?
- Resizing up or down very common operation
  - Searching across scales
  - applications have different memory/quality tradeoffs

### What is a (digital) image?

- True image is a function from R<sup>2</sup> to R
- Digital image is a sample from it
- 1D example:



 To enhance, we need to recover the original signal and sample again

#### Undersampling



© Kavita Bala, Computer Science, Cornell University

#### Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
  - unsurprising result: information is lost
  - surprising result: indistinguishable from lower frequency
  - also was always indistinguishable from higher frequencies
  - *aliasing*: signals "traveling in disguise" as other frequencies

#### Aliasing

 When sampling is not adequate, impossible to distinguish between low and high frequency signal



© Kavita Bala, Computer Science, Cornell University

#### Aliasing in time



#### Aliasing in time



### Point sampling in action

#### How many samples do we need?

• 1 sample per time period is too less:



#### How many samples do we need?

• 2 samples per time-period is enough



- Nyquist sampling theorem: Need to sample at least 2 times the frequency
- General signals? Need to sample at least 2 times the maximum frequency

#### Nyquist sampling: why?

#### Spatial domain



Sampling = Keep values at  $t = kT_s$ , make everything else 0

Frequency domain



Sampling = Make frequency domain periodic with period  $\nu = 1/T_s$  by making copies





#### How to subsample correctly

- Nyquist says must sample at at least twice maximum frequency
- What if signal has high frequencies?
- Eliminate them before sampling!
  - Convert to frequency space
  - Multiply with band-pass filter

#### Eliminating High Frequencies



© Kavita Bala, Computer Science, Cornell University

#### Process

- Can we do this in spatial domain?
  - Yes!
- Multiplication in frequency domain
  = convolution in spatial domain
- Box filter in frequency domain = sinc in spatial domain
- Multiplication with box filter in frequency domain = convolution with sinc filter in spatial domain



#### Reconstruction from samples

#### Spatial domain





Sampling = Keep values at  $t = kT_s$ , make everything else 0



Sampling = Make frequency domain periodic with period  $\nu = 1/T_s$  by making copies



### Reconstruction from samples $F_{recons}(\nu) = F_{sampled}(\nu)B(\nu)$

- Multiplication in frequency domain = convolution in spatial domain
- Box filter in frequency domain = sinc filter in spatial domain
- Convolve sampled signal with sinc filter to reconstruct

#### Reconstruction from samples

- "Sampled signal" is non-zero at sample points and 0 everywhere else
  - i.e., has holes



Recap: subsampling and reconstruction

Subsampling

- Convolve with sinc filter to eliminate high frequencies
- Sample by picking only values at sample points

Reconstruction

- Start with sampled signal (0 at non-sample points)
- 2. Convolve with sinc to reconstruct

#### Sinc is annoying



#### Sinc and Gaussian

- Sinc is annoying: infinite spatial extent
- Use Gaussian instead!



### Subsampling images

- Step 1: Convolve with Gaussian to eliminate high frequencies
- Step 2: Drop unneeded pixels



Subsampling without removing high frequencies



Subsampling after removing high frequencies

#### Upsampling images



Step 1: blow up to original size with 0's in between



#### Upsampling images



Step 2: Convolve with Gaussian



#### Take-away

- Subsampling causes aliasing
  - High frequencies masquerading as low frequencies
- Remove low frequencies by blurring!
  - Ideal: sinc
  - Common: Gaussian
- When upsampling, reconstruct missing values by convolution
  - Ideal: sinc
  - Common: Gaussian

#### So... can we enhance?

- Nyquist theorem limits frequencies we can reconstruct from subsampled image
- Can only reconstruct max sampling frequency/2
- Sorry CSI!