
Images	have	structure	at	various	
scales



Frequency

• Frequency	of	a	signal	is	how	fast	it	changes
• Reflects	scale	of	structure
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Fourier	transform

• Can	we	figure	out	the	canonical	single-frequency	
signals	that	make	up	a	complex	signal?
• Yes!

• Can	any	signal	be	decomposed	in	this	way?
• Yes!



• Suppose	x	is	periodic	with	period	T
• All	components	must	be	periodic	with	period	T/k	
for	some	integer	k
• Only	frequencies	are	of	the	form	k/T

• Thus:

• Given	a	signal	x(t),	Fourier	transform	gives	us	the	
coefficients	ak (we	will	denote	these	as	X[k])

Fourier	transform	for	periodic	
signals

x(t) =
1X

�1
ake

i 2⇡kt
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Fourier	transform	for	aperiodic	
signals
• What	if	signal	is	not	periodic?
• Can	still	decompose	into	sines	and	cosines!
• But	no	restriction	on	frequency
• Now	need	a	continuous	space	of	frequencies

• Fourier	transform	gives	us	the	function	X(v)

”Pure”	
signalx(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫



Fourier	transform

x(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫

X(⌫) =

Z 1

�1
x(t)e�i2⇡⌫t

dt

Note:	X	can	in	principle	be	complex:	we	often	look	at	the	magnitude	|X(v)|



Time Frequency

Why	is	there	a	peak	at	0?



Fourier	transform

x(t) =
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Dual	domains	

• Signal:	time domain (or	spatial	domain)

• Fourier	Transform:	Frequency	domain
• Amplitudes	are	called	spectrum

• For	any	transformations	we	do	in	time	domain,	
there	are	corresponding	transformations	we	
can	do	in	the	frequency	domain
• And	vice-versa

Spatial Domain



Dual	domains

• Convolution	in	time	domain	=	Point-wise	
multiplication	in	frequency	domain

• Convolution	in	frequency	domain	=	Point-wise	
multiplication	in	time	domain

h = f ⇤ g
H = FG

H(⌫) = F (⌫)G(⌫)



Proof	(if	curious)

H(⌫) =
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Properties	of	Fourier	transforms



Back	to	2D	images

• Images	are	2D	signals
• Discrete,	but	consider	as	samples	from	continuous	
function
• Signal:	f(x,y)
• Fourier	transform	F(vx,	vy):	contribution	of	a	“pure”	
signal	with	frequency	vx in	x	and	vy in	y	



Back	to	2D	images



Signals	and	their	Fourier	transform
Spatial
• Sine	

• Gaussian	

• Box

Frequency
• Impulse		

• Gaussian

• Sinc





The	Gaussian	special	case

• Fourier	transform	of	a	Gaussian	is	a	gaussian



Sharp	discontinuities	require	very	
high	frequencies

sinc(x) =
sin(x)

x



Duality

• Since	Fourier	and	inverse	Fourier	look	so	much	
alike:
• Fourier	transform	of	sinc is	box
• Fourier	transform	of	impulse	is	sine

x(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫

X(⌫) =
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x(t)e�i2⇡⌫t

dt



Why	talk	about	Fourier	
transforms?
• Convolution	is	point-wise	multiplication	in	
frequency	space
• Analyze	which	frequency	components	a	particular	filter	
lets	through,	e.g.,	low-pass,	high-pass	or	band-pass	
filters
• Leads	to	fast	algorithms	for	convolution	with	large	
filters:	Fast	FFT



Why	talk	about	Fourier	transforms

• Frequency	space	reveals	structure	at	various	scales
• Noise	is	high-frequency
• ”Average	brightness”	is	low-frequency	

• Useful	to	understand	how	we	resize/resample	
images
• Sampling	causes	information	loss
• What	is	lost	exactly?
• What	can	we	recover?



Fourier	transforms	from	far	away

• Fourier	transforms	are	basically	a	“change	of	basis”
• Instead	of	representing	image	as	“the	value	of	each	
pixel”,
• Represent	image	as	“how	much	of	each	frequency	
component”
• “Frequency	components”	are	intuitive:	slowly-
changing	or	fast-changing	images



”The	cat	has	some	serious	periodic	components.”
https://xkcd.com/26/



Resizing	and	resampling



Let’s	enhance!

Louis	Daguerre,	1838



Let’s	enhance!

• When	is	enhancement	possible?

• How	can	we	model	what	happens	when	we	
upsample or	downsample an	image?

• Resizing	up	or	down	very	common	operation
• Searching	across	scales
• applications	have	different	memory/quality	tradeoffs



What	is	a	(digital)	image?

• True	image	is	a	function	from	R2 to	R
• Digital	image	is	a	sample	from	it
• 1D	example:

• To	enhance,	we	need	to	recover	the	original	signal	
and	sample	again
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Undersampling



Undersampling
• What	if	we	“missed”	things	between	the	samples?
• Simple	example:	undersampling	a	sine	wave
• unsurprising	result:	information	is	lost
• surprising	result:	indistinguishable	from	lower	frequency
• also	was	always	indistinguishable	from	higher	frequencies
• aliasing:	signals	“traveling	in	disguise”	as	other	frequencies
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Aliasing

• When sampling	is	not	adequate,	impossible	to	
distinguish	between	low	and	high	frequency	
signal



Aliasing	in	time



Aliasing	in	time
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23

Point	sampling
in	action



How	many	samples	do	we	need?

• 1	sample	per	time	period	is	too	less:



How	many	samples	do	we	need?

• 2	samples	per	time-period	is	enough

• Nyquist	sampling	theorem:	Need	to	sample	at	least	
2	times	the	frequency
• General	signals?	Need	to	sample	at	least	2	times	
the	maximum	frequency



Nyquist	sampling:	why?

Sampling	=	Keep	values	at	
𝑡 = 𝑘𝑇%,	make	everything	
else	0

Sampling	=	Make	frequency	
domain	periodic	with	period	
𝜈 = 1/𝑇% by	making	copies

⌫
max

�⌫
max

Spatial	domain Frequency	
domain



Nyquist	sampling:	why?
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Nyquist	sampling:	why?



How	to	subsample	correctly

• Nyquist	says	must	sample	at	at	least	twice	
maximum	frequency
• What	if	signal	has	high	frequencies?
• Eliminate	them	before	sampling!
• Convert	to	frequency	space
• Multiply	with	band-pass	filter



Eliminating
High	
Frequencies
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Process

• Can	we	do	this	in	spatial	domain?
• Yes!

• Multiplication in	frequency	domain	
=	convolution in	spatial	domain
• Box	filter	in	frequency	domain	=	
sinc in	spatial	domain
• Multiplication with	box	filter	in	
frequency	domain	=	convolution
with	sinc filter	in	spatial	domain



Reconstruction	from	samples

Sampling	=	Keep	values	at	
𝑡 = 𝑘𝑇%,	make	everything	
else	0

Sampling	=	Make	frequency	
domain	periodic	with	period	
𝜈 = 1/𝑇% by	making	copies

⌫
max

�⌫
max

Spatial	domain Frequency	
domain



Reconstruction	from	samples

F
recons

(⌫) = F
sampled

(⌫)B(⌫)

Box	filter	in	frequency	
space



Reconstruction	from	samples

• Multiplication	in	frequency	domain	=	convolution	in	
spatial	domain
• Box	filter	in	frequency	domain	=	sinc filter	in	spatial	
domain
• Convolve	sampled	signal	with	sinc filter	to	
reconstruct

F
recons

(⌫) = F
sampled

(⌫)B(⌫)



Reconstruction	from	samples

• ”Sampled	signal”	is	non-zero	at	sample	points	and	
0	everywhere	else
• i.e.,	has	holes

*



Recap:	subsampling	and	
reconstruction
Subsampling
1. Convolve	with	sinc

filter	to	eliminate	
high	frequencies

2. Sample	by	picking	
only	values	at	sample	
points

Reconstruction
1. Start	with	sampled	

signal	(0	at	non-
sample	points)

2. Convolve	with	sinc to	
reconstruct



Sinc is	annoying



Sinc and	Gaussian

• Sinc is	annoying:	infinite	spatial	extent
• Use	Gaussian	instead!

Spatial	domain Frequency	domain

Sinc/box

Gaussian



Subsampling	images

• Step	1:	Convolve	with	Gaussian	to	eliminate	high	
frequencies
• Step	2:	Drop	unneeded	pixels

Subsampling	without	removing	
high	frequencies

Subsampling	after	removing	
high	frequencies



Upsampling images

Step	1:	blow	up	to	
original	size	with	0’s	
in	between



Upsampling images

Step	2:	Convolve	with	
Gaussian



Take-away

• Subsampling	causes	aliasing
• High	frequencies	masquerading	as	low	frequencies

• Remove	low	frequencies	by	blurring!
• Ideal:	sinc
• Common:	Gaussian

• When	upsampling,	reconstruct	missing	values	by	
convolution
• Ideal:	sinc
• Common:	Gaussian



So… can	we	enhance?

• Nyquist	theorem	limits	frequencies	we	can	
reconstruct	from	subsampled	image
• Can	only	reconstruct	max	sampling	frequency/2
• Sorry	CSI!


