
All	about	convolution

Last	time:	Convolution	and	cross-
correlation
• Cross	correlation

• Convolution

S[f](m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

S[f](m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m� i, n� j)

S[f] = w ⌦ f

S[f] = w ⇤ f

Last	time:	Convolution	and	cross-
correlation
• Properties
• Shift-invariant:	a	sensible	thing	to	require
• Linearity:	convenient

• Can	be	used	for	smoothing,	sharpening
• Also	main	component	of	CNNs

Boundary	conditions

• What	if	m-i	<0?
• What	if	m-i >	image	size
• Assume	f	is	defined	for	[−∞,∞] in	both	directions,	
just	0	everywhere	else
• Same	for	w

(w ⇤ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m� i, n� j)

(w ⇤ f)(m,n) =
1X

i=�1

1X

j=�1
w(i, j)f(m� i, n� j)

Boundary	conditions

90 0 0 0 0 0 0 0 0 0
0 0 0 10 10 10 0 0 0 0
0 0 10 20 20 20 10 40 0 0
0 10 20 30 0 20 10 0 0 0
0 10 0 30 40 30 20 10 0 0
0 10 20 30 40 30 20 10 0 0
0 10 20 10 40 30 20 10 0 0
0 10 20 30 30 20 10 0 0 0
0 0 10 20 20 0 10 0 20 0
0 0 0 10 10 10 0 0 0 0

Boundary	conditions

90 0 0 0 0 0 0 0 0 0
0 0 0 10 10 10 0 0 0 0
0 0 10 20 20 20 10 40 0 0
0 10 20 30 0 20 10 0 0 0
0 10 0 30 40 30 20 10 0 0
0 10 20 30 40 30 20 10 0 0
0 10 20 10 40 30 20 10 0 0
0 10 20 30 30 20 10 0 0 0
0 0 10 20 20 0 10 0 20 0
0 0 0 10 10 10 0 0 0 0

Boundary	conditions

90 0 0 0 0 0 0 0 0 0
0 0 0 10 10 10 0 0 0 0
0 0 10 20 20 20 10 40 0 0
0 10 20 30 0 20 10 0 0 0
0 10 0 30 40 30 20 10 0 0
0 10 20 30 40 30 20 10 0 0
0 10 20 10 40 30 20 10 0 0
0 10 20 30 30 20 10 0 0 0
0 0 10 20 20 0 10 0 20 0
0 0 0 10 10 10 0 0 0 0

Boundary	conditions

90 0 0 0 0 0 0 0 0 0
0 0 0 10 10 10 0 0 0 0
0 0 10 20 20 20 10 40 0 0
0 10 20 30 0 20 10 0 0 0
0 10 0 30 40 30 20 10 0 0
0 10 20 30 40 30 20 10 0 0
0 10 20 10 40 30 20 10 0 0
0 10 20 30 30 20 10 0 0 0
0 0 10 20 20 0 10 0 20 0
0 0 0 10 10 10 0 0 0 0

Boundary	conditions

90 0 0 0 0 0 0 0 0 0
0 0 0 10 10 10 0 0 0 0
0 0 10 20 20 20 10 40 0 0
0 10 20 30 0 20 10 0 0 0
0 10 0 30 40 30 20 10 0 0
0 10 20 30 40 30 20 10 0 0
0 10 20 10 40 30 20 10 0 0
0 10 20 30 30 20 10 0 0 0
0 0 10 20 20 0 10 0 20 0
0 0 0 10 10 10 0 0 0 0

Boundary	conditions	in	practice

• “Full	convolution”:	compute	if	any	part	of	kernel	
intersects	with	image
• requires	padding
• Output	size	=	m+k-1

• “Same	convolution”:	compute	if	center	of	kernel	is	in	
image
• requires	padding
• output	size	=	m

• “Valid	convolution”:	compute	only	if	all	of	kernel	is	in	
image
• no	padding
• output	size	=	m-k+1

More	properties	of	convolution

(w ⇤ f)(m,n) =
X

i

X

j

w(i, j)f(m� i, n� j) i0 = m� i) i = m� i0

=
X

i

X

j

w(m� i0, n� j0)f(i, j)
j0 = n� j) j = n� j0

= (f ⇤ w)(m,n)

More	properties	of	convolution

• Convolution	is	linear
• Convolution	is	shift-invariant
• Convolution	is	commutative	(w*f	=	f*w)
• Convolution	is	associative (v*(w*f)	=	(v*w)*f)
• Every	linear	shift-invariant	operation	is	a	
convolution

Optimization:	separable	filters
• basic	alg.	is	O(r2):	large	filters	get	expensive	fast!
• definition:	a2(x,y)	is	separable if	it	can	be	written	as:
• this	is	a	useful	property	for	filters	because	it	allows	factoring:

More	convolution	filters

• Mean	filter

• But	nearby	pixels	are	more	correlated	than	far-
away	pixels
• Weigh	nearby	pixels	more

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1/25

Gaussian	filter

G�(x, y) =
1

2⇡�2
e

� x

2+y

2

2�2
G�(x) =

1p
2⇡�2

e

� x

2

2�2

Gaussian	filter

• Ignore	factor	in	front,	
instead,	normalize	filter	
to	sum	to	1

G�(x, y) =
1

2⇡�2
e

� x

2+y

2

2�2

0.003 0.013 0.022 0.013 0.003

0.013 0.060 0.098 0.060 0.013

0.022 0.098 0.162 0.098 0.022

0.013 0.060 0.098 0.060 0.013

0.003 0.013 0.022 0.013 0.003

5x5,	𝜎=1

Gaussian	filter

21x21,	𝜎=0.5

21x21,	𝜎=1 21x21,	𝜎=3

Difference	of	Gaussians

21x21,	𝜎=1
21x21,	𝜎=3

Difference	of	Gaussians

Images	have	structure	at	various	
scales

Fourier	transform	and	
the	frequency	domain

Signal	processing

• Images	are	2D
• For	convenience,	consider	1D	signals
• Instead	of	space,	time

• f[i]	:	value	of	signal	at	point	i (1D	analog	of	f(i,j))
(w ⇤ f)[n] =

X

i

w[i]f [n� i]

Signal	processing

• Instead	of	discrete	signals,	we	will	consider	
continuous	signals
• Discrete	signals	can	be	considered	as	samples	from	
continuous	signals
• f	:	Rà R,	w	:	R	à R
• What	is	convolution	for	continuous	signals?

(w ⇤ f)(t) =
Z +1

�1
w(x)f(t� x)dx

Frequency

• Frequency	of	a	signal	is	how	fast	it	changes
• Reflects	scale	of	structure

Frequency

• 𝑥(𝑡) = cos 2𝜋𝜈𝑡
• What	is	the	period?
• What	is	the	frequency?

A	combination	of	frequencies
0.1	X

0.3	X

0.5	X

+

+

=

Fourier	transform

• Can	we	figure	out	the	canonical	single-frequency	
signals	that	make	up	a	complex	signal?
• Yes!

• Can	any	signal	be	decomposed	in	this	way?
• Yes!

Idea	of	Fourier	Analysis

• Every	signal	(doesn’t	matter	what	it	is)
• Sum	of	sine/cosine	waves

Idea	of	Fourier	Analysis

• Every	signal	(doesn’t	matter	what	it	is)
• Sum	of	sine/cosine	waves

A	box-like	example

The	Fourier	bases

• Not	exactly	sines	and	cosines,	but	complex	variants

• Euler’s	formula

e

ix

= cos(x) + i sin(x)

ei2⇡⌫t = cos(2⇡⌫t) + i sin(2⇡⌫t)

i is	same	as	j

• Suppose	x	is	periodic	with	period	T
• All	components	must	be	periodic	with	period	T/k	
for	some	integer	k
• Only	frequencies	are	of	the	form	k/T

• Thus:

• Given	a	signal	x(t),	Fourier	transform	gives	us	the	
coefficients	ak (we	will	denote	these	as	X[k])

Fourier	transform	for	periodic	
signals

x(t) =
1X

�1
ake

i 2⇡kt
T ”Pure”	

signal

Fourier	transform	for	aperiodic	
signals
• What	if	signal	is	not	periodic?
• Can	still	decompose	into	sines	and	cosines!
• But	no	restriction	on	frequency
• Now	need	a	continuous	space	of	frequencies

• Fourier	transform	gives	us	the	function	X(v)

”Pure”	
signalx(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫

Fourier	transform

x(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫

X(⌫) =

Z 1

�1
x(t)e�i2⇡⌫t

dt

Note:	X	can	in	principle	be	complex:	we	often	look	at	the	magnitude	|X(v)|

Time Frequency

Why	is	there	a	peak	at	0?

Fourier	transform

x(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫

X(⌫) =

Z 1

�1
x(t)e�i2⇡⌫t

dt

Dual	domains	

• Signal:	time domain (or	spatial	domain)

• Fourier	Transform:	Frequency	domain
• Amplitudes	are	called	spectrum

• For	any	transformations	we	do	in	time	domain,	
there	are	corresponding	transformations	we	
can	do	in	the	frequency	domain
• And	vice-versa

Spatial Domain

Dual	domains

• Convolution	in	time	domain	=	Point-wise	
multiplication	in	frequency	domain

• Convolution	in	frequency	domain	=	Point-wise	
multiplication	in	time	domain

h = f ⇤ g
H = FG

H(⌫) = F (⌫)G(⌫)

Proof	(if	curious)

H(⌫) =

Z 1

�1
h(t)e�i2⇡⌫tdt

=

Z 1

�1

Z 1

�1
f(x)g(t� x)dxe�i2⇡⌫tdt

=

Z 1

�1

Z 1

�1
f(x)e�i2⇡⌫xg(t� x)e�i2⇡⌫(t�x)dxdt

=

Z 1

�1

Z 1

�1
f(x)e�i2⇡⌫xg(u)e�i2⇡⌫udxdu

=

Z 1

�1
f(x)e�i2⇡⌫xdx

Z 1

�1
g(u)e�i2⇡⌫udu

= F (⌫)G(⌫)

Properties	of	Fourier	transforms

Back	to	2D	images

• Images	are	2D	signals
• Discrete,	but	consider	as	samples	from	continuous	
function
• Signal:	f(x,y)
• Fourier	transform	F(vx,	vy):	contribution	of	a	“pure”	
signal	with	frequency	vx in	x	and	vy in	y	

Back	to	2D	images

Signals	and	their	Fourier	transform
Spatial
• Sine	

• Gaussian	

• Box

Frequency
• Impulse		

• Gaussian

• Sinc

The	Gaussian	special	case

• Fourier	transform	of	a	Gaussian	is	a	gaussian

Sharp	discontinuities	require	very	
high	frequencies

sinc(x) =
sin(x)

x

Duality

• Since	Fourier	and	inverse	Fourier	look	so	much	
alike:
• Fourier	transform	of	sinc is	box
• Fourier	transform	of	impulse	is	sine

x(t) =

Z 1

�1
X(⌫)ei2⇡⌫td⌫

X(⌫) =

Z 1

�1
x(t)e�i2⇡⌫t

dt

Why	talk	about	Fourier	
transforms?
• Convolution	is	point-wise	multiplication	in	
frequency	space
• Analyze	which	frequency	components	a	particular	filter	
lets	through,	e.g.,	low-pass,	high-pass	or	band-pass	
filters
• Leads	to	fast	algorithms	for	convolution	with	large	
filters:	Fast	FFT

Why	talk	about	Fourier	transforms

• Frequency	space	reveals	structure	at	various	scales
• Noise	is	high-frequency
• ”Average	brightness”	is	low-frequency	

• Useful	to	understand	how	we	resize/resample	
images
• Sampling	causes	information	loss
• What	is	lost	exactly?
• What	can	we	recover?

Fourier	transforms	from	far	away

• Fourier	transforms	are	basically	a	“change	of	basis”
• Instead	of	representing	image	as	“the	value	of	each	
pixel”,
• Represent	image	as	“how	much	of	each	frequency	
component”
• “Frequency	components”	are	intuitive:	slowly-
changing	or	fast-changing	images

”The	cat	has	some	serious	periodic	components.”
https://xkcd.com/26/

