All about convolution

Last time: Convolution and crosscorrelation

- Cross correlation

$$
\begin{aligned}
& S[f]=w \otimes f \\
& S[f](m, n)=\sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m+i, n+j)
\end{aligned}
$$

- Convolution

$$
\begin{aligned}
& S[f]=w * f \\
& S[f](m, n)=\sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m-i, n-j)
\end{aligned}
$$

Last time: Convolution and crosscorrelation

- Properties
- Shift-invariant: a sensible thing to require
- Linearity: convenient
- Can be used for smoothing, sharpening
- Also main component of CNNs

Boundary conditions

$$
(w * f)(m, n)=\sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m-i, n-j)
$$

- What if $\mathrm{m}-\mathrm{i}<0$?
- What if m-i > image size
- Assume f is defined for $[-\infty, \infty$] in both directions, just 0 everywhere else
- Same for w

$$
(w * f)(m, n)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} w(i, j) f(m-i, n-j)
$$

Boundary conditions

90	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

Boundary conditions

90	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

Boundary conditions

90	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

Boundary conditions

\square

90	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

Boundary conditions

Boundary conditions in practice

- "Full convolution": compute if any part of kernel intersects with image
- requires padding
- Output size = m+k-1
- "Same convolution": compute if center of kernel is in image
- requires padding
- output size = m
- "Valid convolution": compute only if all of kernel is in image
- no padding
- output size $=m-k+1$

More properties of convolution

$$
\begin{aligned}
(w * f)(m, n) & =\sum_{i} \sum_{j} w(i, j) f(m-i, n-j) & & i^{\prime}=m-i \Rightarrow i=m-i^{\prime} \\
& =\sum_{i} \sum_{j} w\left(m-i^{\prime}, n-j^{\prime}\right) f(i, j) & & j^{\prime}=n-j \Rightarrow j=n-j^{\prime} \\
& =(f * w)(m, n) & &
\end{aligned}
$$

More properties of convolution

- Convolution is linear
- Convolution is shift-invariant
- Convolution is commutative ($\left.w^{*} f=f^{*} w\right)$
- Convolution is associative $\left(v^{*}\left(w^{*} f\right)=\left(v^{*} w\right)^{*} f\right)$
- Every linear shift-invariant operation is a convolution

Optimization: separable filters

- basic alg. is $O\left(r^{2}\right)$: large filters get expensive fast!
- definition: $a_{2}(x, y)$ is separable if it can be written as:
- this is a useful property for filters because it allows factoring:

$$
a_{2}[i, j]=a_{1}[i] a_{1}[j]
$$

$$
\begin{aligned}
\left(a_{2} \star b\right)[i, j] & =\sum_{i^{\prime}} \sum_{j^{\prime}} a_{2}\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right] \\
& =\sum_{i^{\prime}} \sum_{j^{\prime}} a_{1}\left[i^{\prime}\right] a_{1}\left[j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right] \\
& =\sum_{i^{\prime}} a_{1}\left[i^{\prime}\right]\left(\sum_{j^{\prime}} a_{1}\left[j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]\right)
\end{aligned}
$$

More convolution filters

- Mean filter

$1 / 25$| 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

- But nearby pixels are more correlated than faraway pixels
- Weigh nearby pixels more

Gaussian filter

$G_{\sigma}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Gaussian filter

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

- Ignore factor in front, instead, normalize filter $\begin{array}{lllllll}0.013 & 0.060 & 0.098 & 0.060 & 0.013\end{array}$ to sum to 1

$$
\begin{array}{|l|l|l|l|l|}
\hline 0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\
\hline 0.013 & 0.060 & 0.098 & 0.060 & 0.013 \\
\hline 0.022 & 0.098 & 0.162 & 0.098 & 0.022 \\
\hline 0.013 & 0.060 & 0.098 & 0.060 & 0.013 \\
\hline 0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\
\hline & & 5 \times 5, \sigma=1 & \\
\hline
\end{array}
$$

Gaussian filter

$21 \times 21, \sigma=0.5$

$21 \times 21, \sigma=1$

$21 \times 21, \sigma=3$

Difference of Gaussians

$21 \times 21, \sigma=1$

$21 \times 21, \sigma=3$

Difference of Gaussians

Images have structure at various scales

Fourier transform and the frequency domain

Signal processing

- Images are 2D
- For convenience, consider 1D signals
- Instead of space, time
- $f[i]$: value of signal at point $i(1 D$ analog of $f(i, j)$)

$$
(w * f)[n]=\sum_{i} w[i] f[n-i]
$$

Signal processing

- Instead of discrete signals, we will consider continuous signals
- Discrete signals can be considered as samples from continuous signals
- $f: \mathbf{R} \rightarrow \mathbf{R}, \mathbf{w}: \mathbf{R} \rightarrow \mathbf{R}$
-What is convolution for continuous signals?

$$
(w * f)(t)=\int_{-\infty}^{+\infty} w(x) f(t-x) d x
$$

Frequency

- Frequency of a signal is how fast it changes
- Reflects scale of structure

Frequency

- $x(t)=\cos 2 \pi v t$
- What is the period?
-What is the frequency?

A combination of frequencies

Fourier transform

- Can we figure out the canonical single-frequency signals that make up a complex signal?
- Yes!
- Can any signal be decomposed in this way?
- Yes!

Idea of Fourier Analysis

- Every signal (doesn't matter what it is)
- Sum of sine/cosine waves

Idea of Fourier Analysis

- Every signal (doesn't matter what it is)
- Sum of sine/cosine waves

A box-like example

The Fourier bases

- Not exactly sines and cosines, but complex variants

$$
\begin{aligned}
& e^{i x}=\cos (x)+i \sin (x) \\
& e^{i 2 \pi \nu t}=\cos (2 \pi \nu t)+i \sin (2 \pi \nu t)
\end{aligned}
$$

- Euler's formula

$$
x(t)=\cos (0 t)+\cos (t)-\frac{1}{3} \cos (3 t)+\frac{1}{5} \cos (5 t)-\frac{1}{7} \cos (7 t)
$$

$$
\left\{\begin{array}{l}
\cos \left(\omega_{0} t\right)=\left[e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right] / 2 \\
\sin \left(\omega_{0} t\right)=\left[e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right] / 2 j
\end{array}\right.
$$

i is same as j

$$
\begin{gathered}
x(t)=e^{0 t}+\frac{1}{2}\left[\left(e^{j t}+e^{-j t}\right)-\frac{1}{3}\left(e^{j 3 t}+e^{-j 3 t}\right)+\frac{1}{5}\left(e^{j 5 t}+e^{-j 5 t}\right)-\frac{1}{7}\left(e^{j 7 t}+e^{-j 7 t}\right)\right]=\sum_{k=-7}^{7} X[k] e^{j k \omega_{0} t} \\
X[0]=0 ; \quad X[1]=X[-1]=1 / 2, \quad X[3]=X[-3]=1 / 6, \quad X[5]=X[-5]=1 / 10, \\
\quad X[7]=X[-7]=1 / 14, \quad X[2]=X[-2]=X[4]=X[-4]=X[6]=X[-6]=0
\end{gathered}
$$

Fourier transform for periodic signals

- Suppose x is periodic with period T
- All components must be periodic with period T / k for some integer k
- Only frequencies are of the form k / T
- Thus:

$$
x(t)=\sum_{-\infty}^{\infty} a_{k} e^{i \frac{2 \pi k t}{T}} \Rightarrow \text { "Pure" } \text { signal }
$$

- Given a signal $x(t)$, Fourier transform gives us the coefficients a_{k} (we will denote these as $X[k]$)

Fourier transform for aperiodic signals

- What if signal is not periodic?
- Can still decompose into sines and cosines!
- But no restriction on frequency
- Now need a continuous space of frequencies

$$
x(t)=\int_{-\infty}^{\infty} X(\nu) e^{i 2 \pi \nu t} d \nu \begin{gathered}
\text { "Pure" } \\
\text { signal }
\end{gathered}
$$

- Fourier transform gives us the function $X(v)$

Fourier transform

$$
\begin{aligned}
& x(t)=\int_{-\infty}^{\infty} X(\nu) e^{i 2 \pi \nu t} d \nu \\
& X(\nu)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi \nu t} d t
\end{aligned}
$$

Note: X can in principle be complex: we often look at the magnitude $|X(v)|$

Time

Frequency

Why is there a peak at 0 ?

Fourier transform

$$
\begin{aligned}
& x(t)=\int_{-\infty}^{\infty} X(\nu) e^{i 2 \pi \nu t} d \nu \\
& X(\nu)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi \nu t} d t
\end{aligned}
$$

Dual domains

- Signal: time domain (or spatial domain)
- Fourier Transform: Frequency domain
- Amplitudes are called spectrum
- For any transformations we do in time domain, there are corresponding transformations we can do in the frequency domain
- And vice-versa

Dual domains

- Convolution in time domain = Point-wise multiplication in frequency domain

$$
\begin{gathered}
h=f * g \\
H=F G \\
H(\nu)=F(\nu) G(\nu)
\end{gathered}
$$

- Convolution in frequency domain $=$ Point-wise multiplication in time domain

Proof (if curious)

$$
\begin{aligned}
H(\nu) & =\int_{-\infty}^{\infty} h(t) e^{-i 2 \pi \nu t} d t \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(t-x) d x e^{-i 2 \pi \nu t} d t \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) e^{-i 2 \pi \nu x} g(t-x) e^{-i 2 \pi \nu(t-x)} d x d t \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) e^{-i 2 \pi \nu x} g(u) e^{-i 2 \pi \nu u} d x d u \\
& =\int_{-\infty}^{\infty} f(x) e^{-i 2 \pi \nu x} d x \int_{-\infty}^{\infty} g(u) e^{-i 2 \pi \nu u} d u \\
& =F(\nu) G(\nu)
\end{aligned}
$$

Properties of Fourier transforms

Property	Signal	Transform
superposition	$f_{1}(x)+f_{2}(x)$	$F_{1}(\omega)+F_{2}(\omega)$
shift	$f\left(x-x_{0}\right)$	$F(\omega) e^{-j \omega x_{0}}$
reversal	$f(-x)$	$F^{*}(\omega)$
convolution	$f(x) * h(x)$	$F(\omega) H(\omega)$
correlation	$f(x) \otimes h(x)$	$F(\omega) H^{*}(\omega)$
multiplication	$f(x) h(x)$	$F(\omega) * H(\omega)$
differentiation	$f^{\prime}(x)$	
domain scaling	$f(a x)$	
real images	$f(x)=f^{*}(x)$	\Leftrightarrow
Parseval's Theorem	$\sum_{x}[f(x)]^{2}$	$=$

Back to 2D images

- Images are 2D signals
- Discrete, but consider as samples from continuous function
- Signal: $f(x, y)$
- Fourier transform $\mathrm{F}\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}\right)$: contribution of a "pure" signal with frequency v_{x} in x and v_{y} in y

Back to 2D images

Signals and their Fourier transform

Spatial

- Sine
- Gaussian
- Box

Frequency

- Impulse
- Gaussian
- Sinc

Fig. 14.25 Filters in spatial and frequency domains. (a) Pulse-sinc. (b) Trianglesinc^{2}. (c) Gaussian-Gaussian. (Courtesy of George Wolberg, Columbia University.)

The Gaussian special case

- Fourier transform of a Gaussian is a gaussian

Sharp discontinuities require very

 high frequencies

Duality

$$
\begin{aligned}
& x(t)=\int_{-\infty}^{\infty} X(\nu) e^{i 2 \pi \nu t} d \nu \\
& X(\nu)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi \nu t} d t
\end{aligned}
$$

- Since Fourier and inverse Fourier look so much alike:
- Fourier transform of sinc is box
- Fourier transform of impulse is sine

Why talk about Fourier transforms?

- Convolution is point-wise multiplication in frequency space
- Analyze which frequency components a particular filter lets through, e.g., low-pass, high-pass or band-pass filters
- Leads to fast algorithms for convolution with large filters: Fast FFT

Why talk about Fourier transforms

- Frequency space reveals structure at various scales
- Noise is high-frequency
- "Average brightness" is low-frequency
- Useful to understand how we resize/resample images
- Sampling causes information loss
- What is lost exactly?
- What can we recover?

Fourier transforms from far away

- Fourier transforms are basically a "change of basis"
- Instead of representing image as "the value of each pixel",
- Represent image as "how much of each frequency component"
- "Frequency components" are intuitive: slowlychanging or fast-changing images

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of m_{y} cat...

"The cat has some serious periodic components."
https://xkcd.com/26/

