The visual world

What do images look like?

0	3	2	5	4	7	6	9	8
3	0	1	2	3	4	5	6	7
2	1	0	3	2	5	4	7	6
5	2	3	0	1	2	3	4	5
4	3	2	1	0	3	2	5	4
7	4	5	2	3	0	1	2	3
6	5	4	3	2	1	0	3	2
9	6	7	4	5	2	3	0	1
8	7	6	5	4	3	2	1	0

The physical world

- Not pixels!

The physical world

- Not pixels!

The physical world

- Not pixels!

The physical world

Locations, orientations

World \rightarrow Images

The goal of computer vision

The goal(s) of computer vision

- Grouping ("Reorganization")
- Convert from "pixels" to "objects": which groups of pixels correspond to objects?

The goal(s) of computer vision

- Reconstruction
- Go from 2D arrays to 3D: what does every pixel correspond to in 3D

The goal(s) of computer vision

- Recognition
- "Name" the object: what class does it belong to?

Ceci n 'est pas une pipe.

How do we do this?

The pinhole camera - Camera Obscura

The pinhole camera

We will get into the math later

The pinhole camera

Not all 2D arrays are images

Consequence 1: nearby pixels are similar

Consequence 1: nearby pixels are similar

Log histogram of differences between adjacent pixels

Natural images

Consequence 1: nearby pixels are similar

- Why?
- Nearby pixels in pinhole camera lead to nearby rays
- Nearby rays mostly fall on the same object

Consequence 1: nearby pixels are similar

- Nearby pixels that are not similar tend to lie on different objects
- Idea: To find where one object ends and another begins, look for abrupt changes in color

Consequence 1: nearby pixels are similar

- Places of color change might correspond to object boundaries
- Object boundaries are a clue to object shape
- Idea: Use rough boundaries to recognize object(s)

Counterexample: camouflage

Consequence 2: Farther away objects appear smaller

Consequence 2: Farther away objects appear smaller

Consequence 2: Farther away objects appear smaller

- Key modules: search over scales, zoom-out/zoomin

Consequence 3: Image formation

is lossy

- We lose depth information

Consequence 3: Image formation
is lossy

- Idea: use multiple images

Consequence 3: Image formation
is lossy

- Idea: use multiple images

Consequence 3: Image formation
is lossy

- Idea: use multiple images

Consequence 4: Image formation

 is lossy- Idea: use multiple images
- Need to find which pixel in image 2 matches which in image 1 - the correspondence problem

Color

- Each pixel records "color" of a ray
- But what is color?

What is light?

- Light is electromagnetic radiation

Physics to Brain

Physical

Perceptual

The eye

Photoreceptors

- 120 million rods
- 7-8 million cones in each eye

Receptor distribution

Cone Responses

- S,M,L cones have broadband spectral sensitivity
- Converts a distribution over wavelength into 3 values
- Hence 3 colors: blue (S), green (M), red (L)

Color

The Emir of Bukhara, Alim Khan, in a 1911 color photograph by Sergey ProkudinGorsky. At right is the triple color-filtered black-and-white glass plate negative, shown here as a positive. [wikipedia article on color photography]

Color and light

How bees see the world
https://beecare.bayer.com/media-center/beenow/detail/vision-science-how-bees-perceive-the-world

Color and light

- Each pixel records amount of energy in red light, blue light green light
- But where does light energy come from?

Color and light

Color and light

Color and light

Color and light

Color and light

Color and light

- Color of a pixel depends on:
- Color of light
- "Paint" on surface
- Direction of light w.r.t surface
- Viewing direction
- Presence/absence of cast shadows

Consequence 4: Pixel color is complicated

- Idea: rely less on absolute color. Look at changes in color (may be object boundaries or change in paint) instead

Consequence 4: Pixel color is complicated

- Understanding light can give us clues to shape

Take-away

- Natural images are not arbitrary 2D arrays
- They have properties resulting from physics / math of image formation
- Solving computer vision requires using these properties

Some primitives

- Edge detection: identifying where pixels change color
- Cue to object boundary
- Cue to shape
- More resilient to lighting than pixel color
- Zooming into or out of images
- Searching for both nearby and far-off objects
- Matching patches from two different images
- First step in identifying 3D location

Other related problems

- Image Restoration
- denoising
- deblurring
- Image Compression
- JPEG, JPEG2000, MPEG..
- Again, use the same "priors"

Next up: Image processing

Let's enhance

Let's Enhance (HD)

