CS4670 / 5670: Computer Vision Kavita Bala

Lecture 21: Panoramas

Announcements

- Prelim on Thu
 - Everything till Lecture 17
 - Closed book
 - Bring your calculator
 - 7:30 pm, Location
 - Kennedy Hall, 116

Mosaics

• How do we align the images?

Creating a panorama

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - If there are more images, repeat

Geometric Interpretation of Mosaics

- If we capture all 360° of rays, we can create a 360° panorama
- The basic operation is *projecting* an image from one plane to another
- The projective transformation is scene-INDEPENDENT
 - This depends on all the images having the same optical center

What is the transformation?

$$\tilde{\boldsymbol{x}}_{ik} \sim \tilde{\boldsymbol{H}}_{kj} \tilde{\boldsymbol{x}}_{ij} = \boldsymbol{K}_k \boldsymbol{R}_k \boldsymbol{R}_j^{-1} \boldsymbol{K}_j^{-1} \tilde{\boldsymbol{x}}_{ij}.$$

Spherical projection

Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(sin\theta cos\phi, sin\phi, cos\theta cos\phi) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, s\phi) + (\tilde{x}_c, \tilde{y}_c)$$

- s defines size of the final image
 - » often convenient to set s = camera focal length in pixels

Spherical image

Spherical reprojection

- Map image to spherical coordinates
 - need to know the focal length

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
 - How does this change the spherical image?
 - Translation by θ
 - This means that we can align spherical images by translation

Need blending

Alpha Blending / Feathering

$$I_{blend} = \alpha I_{left} + (1-\alpha)I_{right}$$

Effect of Window Size

Effect of Window Size

Good Window Size

 $0+\sum_{i=1}^{n+1}$

"Optimal" Window: smooth but not ghosted

What is the optimal size?

- To avoid seams
 - Window >= size of largest prominent feature
- To avoid ghosting
 - Window/2 <= size of smallest prominent feature</p>

Pyramid blending

Create a Laplacian pyramid, blend each level (octave)

• Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

What if the Frequency Spread is Wide

- Idea (Burt and Adelson)
 - Compute $F_{left} = FFT(I_{left})$, $F_{right} = FFT(I_{right})$
 - Decompose Fourier image into octaves (bands)
 - $F_{left} = F_{left}^{1} + F_{left}^{2} + ...$
 - Feather corresponding octaves F_{left} with F_{right}
 - Can compute inverse FFT and feather in spatial domain
 - Sum feathered octave images in frequency domain
- Better implemented in spatial domain

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Pyramid Blending

Left pyramid

blend

Right pyramid

Pyramid Blending

Blending Regions

Horror Photo

© david dmartin (Boston College)

Simplification: Two-band Blending

- Brown & Lowe, 2003
 - Only use two bands: high freq. and low freq.

2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf? isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn%2C+J.F.

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

color at p =
$$\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if α = 0?

Project 3

- Take pictures on a tripod (or handheld)
- Warp to spherical coordinates (optional if using homographies to align images)
- Extract features
- Align neighboring pairs using RANSAC
- Write out list of neighboring translations
- Blend the images
- Correct for drift
- Now enjoy your masterpiece!

Some panorama examples

Every image on Google Streetview

Other types of mosaics

- Can mosaic onto any surface if you know the geometry
 - See NASA's <u>Visible Earth project</u> for some stunning earth mosaics
 - http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
 - Click for <u>images</u>...

• https://t.co/qean7Alb7p

Don't blend, CUT!

Moving objects become ghosts

So far we only tried to blend between two images.
 What about finding an optimal seam?

Davis, 1998

- Segment the mosaic
 - Single source image per segment
 - Avoid artifacts along boundries
 - Dijkstra's algorithm

Minimal error boundary

Seam Carving

Seam Carving for Content-Aware Image Resizing

Shai Avidan Mitsubishi Electric Research Labs

Ariel Shamir
The Interdisciplinary Center & MERL

Graphcuts

- What if we want similar "cut-where-thingsagree" idea, but for closed regions?
 - Dynamic programming can't handle loops

Graph cuts

(simple example à la Boykov&Jolly, ICCV' 01)

Minimum cost cut can be computed in polynomial time (max-flow/min-cut algorithms)

Kwatra et al, 2003

Actually, for this example, DP will work just as well...

Lazy Snapping

Interactive segmentation using graphcuts

Gradient Domain

- In Pyramid Blending, we decomposed our image into 2nd derivatives (Laplacian) and a low-res image
- Let us now look at 1st derivatives (gradients):
 - No need for low-res image
 - captures everything (up to a constant)
 - Idea:
 - Differentiate
 - Blend
 - Reintegrate

Gradient Domain blending (1D)

Regular blending

Blending derivatives

Gradient Domain Blending (2D)

- Trickier in 2D:
 - Take partial derivatives dx and dy (the gradient field)
 - Edit (smooth, blend, feather, etc)
 - Reintegrate
 - Find the most agreeable solution
 - Equivalent to solving Poisson equation
 - Can use FFT, deconvolution, multigrid solvers, etc.

Perez et al., 2003

Perez et al, 2003

- Limitations:
 - Images need to be very well aligned

Putting it all together

- Compositing images
 - Have a clever blending function
 - Feathering
 - Blend different frequencies differently
 - Gradient based blending
 - Choose the right pixels from each image
 - Dynamic programming optimal seams
 - Graph-cuts
- Now, let's put it all together:
 - Interactive Digital Photomontage, 2004 (video)

Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva Maneesh Agrawala, Steven Drucker, Alex Colburn Brian Curless, David Salesin, Michael Cohen

