CS4670 / 5670: Computer Vision KavitaBala

Lecture 18: Cameras

Source: S. Lazebnik

Announcements

- Prelim next Thu
 - Everything till Monday

Where are we?

• Imaging: pixels, features, ...

• Scenes: geometry, material, lighting

• Recognition: people, objects, ...

Reading

• Szeliski 2.1.3-2.1.6

Panoramas

- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?

To figure this out, we need to learn what a camera is

360 panorama

Image formation

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does this transform the image?

Camera Obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

Pinhole photography

Justin Quinnell, The Clifton Suspension Bridge. December 17th 2007 - June 21st 2008 *6-month* exposure

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - *Diffraction* effects...

Shrinking the aperture

Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

Lenses

- A lens focuses parallel rays onto a single focal point
 - focal point at a distance f beyond the plane of the lens (the focal length)
 - f is a function of the shape and index of refraction of the lens
 - Aperture restricts the range of rays
 - aperture may be on either side of the lens
 - Lenses are typically spherical (easier to produce)

The eye

• The human eye is a camera

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-their-eyes. html?image=25

http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-their-eyes.html?image=25

Eyes in nature: eyespots to pinhole

Projection

Projection

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 - Why?
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

• The screen-space or image-plane projection is therefore:

$$(-d\frac{x}{z}, -d\frac{y}{z})$$

Modeling projection

- Is this a linear transformation?
 - no—division by z is nonlinear

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

$$(x,y,z) \Rightarrow \left[egin{array}{c} x \ y \ z \ 1 \end{array}
ight]$$

homogeneous image coordinates

homogeneous scene coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**
- (Can also represent as a 4x4 matrix OpenGL does something like this)

Perspective Projection

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

What have we lost?

- Angles
- Distances (lengths)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points → points
- Lines → lines (collinearity is preserved)
 - But line through focal point projects to a point
- Planes → planes (or half-planes)
 - But plane through focal point projects to line

Projection properties

Parallel lines converge at a vanishing point

Each direction in space has its own vanishing point

- But parallels parallel to the image plane remain

Orthographic projection

Perspective projection

Camera parameters

 How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

- 1. World coordinate system
- 2. *Camera* coordinate system

- To project a point (x,y,z) in world coordinates into a camera
- First transform (x,y,z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- Then project into the image plane
 - Need to know camera intrinsics
- These can all be described with matrices

Projection equation

The projection matrix models the cumulative effect of all parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

• The projection matrix models the cumulative effect of all parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c) , pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\boldsymbol{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$
intrinsics
projection
rotation
translation

- The definitions of these parameters are **not** completely standardized
 - especially intrinsics—varies from one book to another

Projection matrix

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Affine change of coordinates

- Coordinate frame: point plus basis
- Need to change representation of point from one basis to another
- Canonical: origin (0,0) w/ axes e1, e2

Another way of thinking about this

Change of coordinates

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{0} \\ 0 & 0 & 1 \end{bmatrix}$$

Move points to and from frame by multiplying with F

$$p_e = F p_F \quad p_F = F^{-1} p_e$$

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

For any rotation matrix R acting on \mathbb{R}^n ,

Perspective projection

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

 \mathbf{K} (intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

Perspective projection

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

in general,
$$\mathbf{K}=\begin{bmatrix} -f & s & c_x \\ 0 & -\alpha f & c_y \\ 0 & 0 & 1 \end{bmatrix}$$
 (upper triangular matrix)

lpha: aspect ratio (1 unless pixels are not square)

 $S: \mathbf{skew}$ (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x,c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$(t \text{ in book's notation})$$

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$