CS4670/5670: Computer Vision Kavita Bala

Lecture 3: Filtering and Edge detection

Announcements

- PA 1 will be out later this week (or early next week)
 - due in 2 weeks
 - to be done in groups of two please form your groups ASAP
- Piazza: make sure you sign up
- CMS: mail to Megan Gatch (mlg34@cornell.edu)

Mean filtering/Moving Average

Replace each pixel with an average of its neighborhood

- Achieves smoothing effect
 - Removes sharp features

1 9	1	1	1
	1	1	1
	1	1	1

Filters: Thresholding

$$g(m,n) = \begin{cases} 255, & f(m,n) > A \\ 0 & otherwise \end{cases}$$

Linear filtering

- One simple version: linear filtering
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
 - Simple, but powerful
 - Cross-correlation, convolution
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Filter Properties

Linearity

- Weighted sum of original pixel values
- Use same set of weights at each point
- -S[f+g] = S[f] + S[g]
- S[k f + m g] = k S[f] + m S[g]

Linear Systems

Is mean filtering/moving average linear?

Is thresholding linear?

Filter Properties

Linearity

- Weighted sum of original pixel values
- Use same set of weights at each point
- -S[f + g] = S[f] + S[g]
- -S[p f + q g] = p S[f] + q S[g]
- Shift-invariance
 - If $f[m,n] \stackrel{s}{\rightarrow} g[m,n]$, then $f[m-p,n-q] \stackrel{s}{\rightarrow} g[m-p,n-q]$
 - The operator behaves the same everywhere

Overview

- Two important filtering operations
 - Cross correlation
 - Convolution

Sampling theory

Multiscale representations

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Stereo head

Camera on a mobile vehicle

Example image pair – parallel cameras

Intensity profiles

• Clear correspondence between intensities, but also noise and ambiguity

left image band right image band

Normalized Cross Correlation

write regions as vectors

$$\mathtt{A} o \mathbf{a}, \ \mathtt{B} o \mathbf{b}$$

$$NCC = \frac{a.b}{|\mathbf{a}||\mathbf{b}|}$$

left image band right image band

cross correlation

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Convolution

Linear filters: examples

=

Shifted left By 1 pixel

Linear filters: examples

Original

Sharpening filter (accentuates edges)

Sharpening

before

Source: D. Lowe

Sharpening revisited

What does blurring take away?

Let's add it back:

Source: S. Lazebnik

Sampling Theory

Sampled representations

Reconstruction

- Making samples back into a continuous function
 - -for output (need realizable method)
 - –for analysis or processing (need mathematical method)

Roots of sampling

- Nyquist 1928; Shannon 1949
 - -famous results in information theory
- 1940s: first practical uses in telecommunications
- 1960s: first digital audio systems
- 1970s: commercialization of digital audio
- 1982: introduction of the Compact Disc
 - —the first high-profile consumer application
- This is why all the terminology has a communications or audio "flavor"
 - -early applications are 1D; for us 2D (images) is important

Filtering

- Processing done on a function
 - in continuous form
 - also using sampled representation
- Simple example: smoothing by averaging

Convolution warm-up

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

Convolution warm-up

 Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Discrete convolution

- Simple averaging: $b_{\mathrm{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$
 - -every sample gets the same weight
- Convolution: same idea but with weighted average

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

- —each sample gets its own weight (normally zero far away)
- This is all convolution is: a moving weighted average

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support
 - —usually centered on zero: support radius *r*
- Filter is *normalized* so that it sums to 1.0
 - —this makes for a weighted average
 - not just any old weighted sum
- Most filters are symmetric about 0
 - —since for images we usually want to treat left and right the same

Convolution and filtering

 Can express sliding average as convolution with a box filter

•
$$a_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$$

Example: box and step

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: Bell curve (Gaussian-like)

$$-[..., 1, 4, 6, 4, 1, ...]/16$$

And in pseudocode...

```
function convolve(sequence a, sequence b, int r, int i)
s = 0
for j = -r to r
s = s + a[j]b[i - j]
return s
```

Discrete convolution

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - -commutative $a \star b = b \star a$
 - -associative $a \star (b \star c) = (a \star b) \star c$
 - -distributes over addition $a \star (b+c) = a \star b + a \star c$
 - -scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - —identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

$$a \star e = a$$

Conceptually no distinction between filter and signal

Discrete filtering in 2D

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

- -now the filter is a rectangle you slide around over a grid of numbers
- Commonly applied to images
 - —blurring (using box, gaussian, ...)
 - -sharpening
- Usefulness of associativity
 - –often apply several filters one after another:
 - $(((a * b_1) * b_2) * b_3)$
 - —this is equivalent to applying one filter:
 - a * $(b_1 * b_2 * b_3)$

And in pseudocode...

```
function convolve2d(filter2d a, filter2d b, int i, int j)
s=0
r=a.radius

for i'=-r to r do
\mathbf{for}\ j'=-r \text{ to } r \mathbf{do}
s=s+a[i'][j']b[i-i'][j-j']

return s
```

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: $a_2(x,y)$ is *separable* if it can be written as: $a_2[i,j] = a_1[i]a_1[j]$
 - —this is a useful property for filters because it allows factoring:

$$(a_2 \star b)[i,j] = \sum_{i'} \sum_{j'} a_2[i',j']b[i-i',j-j']$$

$$= \sum_{i'} \sum_{j'} a_1[i']a_1[j']b[i-i',j-j']$$

$$= \sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j']b[i-i',j-j']\right)$$

A gallery of filters

- Box filter
 - –Simple and cheap
- Tent filter
 - –Linear interpolation
- Gaussian filter
 - –Very smooth antialiasing filter
- B-spline cubic
 - –Very smooth

• . . .

Box filter

$$a_{\text{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$

Tent filter

$$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases}$$

$$f_{\text{tent},r}(x) = \frac{f_{\text{tent}}(x/r)}{r}.$$

Gaussian filter

$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Reducing and enlarging

- Very common operation
 - –devices have differing resolutions
 - –applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

1000 pixel width

[Philip Greenspun]

[Philip Greenspun]

by dropping pixels

gaussian filter

250 pixel width

box reconstruction bicubing filter 4000 pixel width

bicubic reconstruction width

 $\begin{array}{c} \text{[Philip Greenspun]} \\ & \text{original } ^{\triangle} | \nabla \text{ box blur} \end{array}$

sharpened △ ∇ gaussian blur

Box filtering in action

Filter comparison

Point sampling

Box filtering

Gaussian filtering