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The backward pass is easy:

(Remember they’re usually not the same)
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xi ... fi piSoftmax Li

yi
Cross- 
Entropy

∂L
∂ fi, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry      set to 1)yi

(Try deriving this — it’s tricky but not too hard)

Now we can continue backpropagating to the layer before “f”
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Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?
- What if there is the value 1000 appears in “f”?

pi, j =
e fi , j

e fi ,k
k
∑

- What if the largest value is -1000?
Overflow —> we get inf/inf = NaN

Underflow —> we get 0/0 = NaN

This expression is numerically unstable

Example: Softmax (for N inputs)
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What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

HW2: you will derive this for various layers.

x hLayer

W ,b

h = h(x;W )

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑
(the number of subscripts and summations changes 

depending on your layer and parameter sizes)

∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑
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θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

Backward Propagation:

Function

∂L
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Recap



x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

...

Backward Propagation:

∂L
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x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

Function

∂L
∂θ (1)

∂L
∂x

Recap
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CNNs
It’s just neural networks 

with 3D activations
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What shape should the 
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then 
we lose structure

- What about keeping everything in 3D?
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3D Activations

For example, a CIFAR-10 image is a 3x32x32 volume 
(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy
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3D Activations
1D Activations: 3D Activations:

Figure: Andrej Karpathy



3D Activations

5

5

- The input is 3x32x32  

- This neuron depends 
on a 3x5x5 chunk of 
the input 

- The neuron also has a 
3x5x5 set of weights 
and a bias (scalar)

Figure: Andrej Karpathy
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3D Activations

5

5

Example: consider the 
region of the input “    ”

xr

hr

xr

With output neuron hr

hr = xrijkWijk
ijk
∑ + b

Then the output is:

Sum over 3 axes
Figure: Andrej Karpathy
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3D Activations

Each neuron has its 
own 3D filter and 
own (scalar) bias

We can keep adding 
more outputs

These form a column 
in the output volume: 
[depth x 1 x 1]

Figure: Andrej Karpathy
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3D Activations
Now repeat this 
across the input

Each filter shares 
the same weights 
(but each depth 
index has its own 

set of weights)

Weight sharing:

D sets of weights 
(also called filters)

Figure: Andrej Karpathy
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3D Activations
With weight 
sharing, 
this is called 
convolution
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3D Activations
With weight 
sharing, 
this is called 
convolution

Without weight 
sharing, 
this is called a 
locally 
connected layer

Figure: Andrej Karpathy

D sets of weights 
(also called filters)



3D Activations
One set of weights gives 
one slice in the output

To get a 3D output of depth D, 
use D different filters

In practice, CNNs use many 
filters (~64 to 1024)

(input 
depth)

(output 
depth)

Output of one filter



3D Activations
One set of weights gives 
one slice in the output

To get a 3D output of depth D, 
use D different filters

All together, the weights are 4 dimensional: 
(output depth, input depth, kernel height, kernel width)

In practice, CNNs use many 
filters (~64 to 1024)

(input 
depth)

(output 
depth)

Output of one filter
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nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels
all positions

bias

3D Activations

Let’s code this up in NumPyxr
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3D Activations

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

We can unravel the 3D cube and show each layer separately:
(Input)



Questions?
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Convolution: Stride

Input

During convolution, the weights “slide” along the input to 
generate each output

Recall that at each position, 
we are doing a 3D sum:

hr = xrijkWijk
ijk
∑ + b

(channel, row, column)
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Convolution: Stride

Input

- Notice that with certain 
strides, we may not be able to 
cover all of the input

Output

- The output is also half the 
size of the input

But we can also convolve with a stride, e.g. stride = 2
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Here, pad = 1, stride = 2
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Convolution: Padding
We can also pad the input with zeros. 
Here, pad = 1, stride = 2

Output
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Convolution: 
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

width win

stride s

kernel k

pp

wout =
win + 2p − k

s
⎢
⎣⎢

⎥
⎦⎥
+1

In general, the output has size:



Convolution: 
How big is the output?
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Example: k=3, s=1, p=1

width win p

stride s

kernel k

p



Convolution: 
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Example: k=3, s=1, p=1

wout =
win + 2p − k

s
⎢
⎣⎢

⎥
⎦⎥
+1

= win + 2 − 3
1

⎢
⎣⎢

⎥
⎦⎥
+1

= win

width win p

stride s

kernel k

p



Convolution: 
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Example: k=3, s=1, p=1

wout =
win + 2p − k

s
⎢
⎣⎢

⎥
⎦⎥
+1

= win + 2 − 3
1

⎢
⎣⎢

⎥
⎦⎥
+1

= win

width win p

stride s

kernel k

VGGNet [Simonyan 2014] 
uses filters of this shapep
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Max Pooling

Figure: Andrej Karpathy

For most CNNs, convolution is often followed by pooling:
- Creates a smaller representation while retaining the 
most important information
- The “max” operation is the most common
- Why might “avg” be a poor choice?
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What’s the backprop rule for max pooling?
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Max Pooling

Figure: Andrej Karpathy

What’s the backprop rule for max pooling?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index
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Example CNN

Figure: Andrej Karpathy

10x3x3 conv filters, stride 1, pad 1
2x2 pool filters, stride 2



Questions?


