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For each layer, we compute:

| Propagated gradient to the left | =
| Propagated gradient from right |-[ Local gradient |

e \

(Received during backprop) (Can compute immediately)
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it's easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations
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Example: Mean Subtraction
(for a single input)

* Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

 Example layer: mean subtraction:

1 TR 1’ )]
h = x, Zxk (here, “I” and "k
D=

are channels)

* [For backprop, we just need the local derivative
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(for a single input)

1
 Forward: h, =X, — —Zxk
D=

o Backward: 9L _9L 1§ 9dL

ox, oh D“on
* |n this case, they're identical operations!

e Usually the forwards pass and backwards pass are
similar but not the same.

* Derive it by hand, and check it numerically
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Example: Mean Subtraction
(for a single input)

1
* Forward: hi=xi——zxk
D k

Let's code this up in NumPy:

def forward(X): Dimension mismaitch
return X - np.mean(X, axis=1)

You need to broadcast properly:

def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]

This also works:

def forward(X):
return X - np.mean(X, axis=1, keepdims=True)
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The backward pass is easy:

def backward(dh):
return forward(dh)

(Remember they’re usually not the same)
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Example: Softmax (for N inputs)

Let’'s assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

(ground truth labels) ~ (here, "I" are
different examples)
Y, —
Cross-
X, T Softmax D, Entropy | L
(input)  (scores) (probabilities) (loss)

e’
Pij = Y e L;=-logp,, L= %Z L
k z

(Softmax) (Cross-entropy)  (Avg. over examples)
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Example: Softmax (for N inputs)

Y

l
X.— oo —>—> Softmax — p —» Cross- — L
l : l Entropy l

\

OL|_Pii=t; where t,=[0 ...1...0]
df. N (Entry ¥, setto 1)

Derivative:

(Try deriving this — it's tricky but not too hard)

Now we can continue backpropagating to the layer betore “f”
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def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
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Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Overflow —> we get int/inf = NaN

- What if the largest value is -10007
Underflow —> we get 0/0 = NaN



Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Overflow —> we get int/inf = NaN

- What if the largest value is -10007
Underflow —> we get 0/0 = NaN

This expression is numerically unstable
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- It all values Iin “f" are large negative, then they will
be shifted up towards O (avoiding underflow)




Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:
Jii=C e—Cefi,j Ji.j

e e’
p' T .. —C — —C f — .
k k k

If we choose “C” to be the max, then it works:

- It a large value appears in “t, then that value will
become 1 and all others will be 0 (avoiding overtlow)

- It all values Iin “f" are large negative, then they will
be shifted up towards O (avoiding underflow)

def softmax(f):
exp_f = np.exp(f - np.max(f, axis=1l, keepdims=True))
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)
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What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W.b
X —| Layer |— h h=h(x;W)
BL 2 JdL dh, dJdL 2 JdL oh,
oh, BW ab oh, ob.

( the number of subscripts and summations changes
depending on your layer and parameter sizes)



What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W.b
X —| Layer |— h h=h(x;W)
BL 2 JdL dh, dJdL 2 JdL oh,
oh, BW ab oh, ob.

( the number of subscripts and summations changes
depending on your layer and parameter sizes)

HW2: you will derive this for various layers.
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CNNSs

It's Just neural networks
with 3D activations
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What shape should the

activations have?

X — Layer

\

- The Input Is an image, which is 3D

_>}hﬂ)_+

Layer

(RGB channel, height, width)

— kﬁQ)_* e

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D7

- f



3D Activations

before:

output layer
Input
layer hidden layer (1 D VECtOI‘S)

Figure: Andrej Karpathy



3D Activations

before:

output layer
Input
layer hidden layer (1 D VeCtorS)

NOW: X h1 h2

y

(3D arrays)

Figure: Andrej Karpathy
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3D Activations

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy



3D Activations

1D Activations:

Figure: Andrej Karpathy



3D Activations

1D Activations: 3D Activations:

a hidden neuron in
next layer

32

w\\\,%\

Figure: Andrej Karpathy



3D Activations

32

32

e\

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The input Is 3x32x32

- This neuron depends

on a 3xbx5 chunk of
the input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)
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32

a hidden neuron in
next layer

hi’

32

w\‘" Vo RN

Figure: Andrej Karpathy

Example: consider the
region of the input “x"”

With output neuron A’



3D Activations

Example: consider the
32 region of the input “x"”

a hidden neuron in
next layer

With output neuron A’

h Then the output Is:

32

w\‘" Vo RN

h' = Exrzjkvvzjk +b

ijk

Figure: Andrej Karpathy



3D Activations

32

32

w\‘“ o] k\

Figure: Andrej Karpathy

a hidden neuron in
next layer

hl"

Example: consider the
region of the input “x"”

With output neuron A’

Then the output Is:

h' = Exrzjkvvzjk +b

ijk

\

Sum over 3 axes



3D Activations

32

a hidden neuron in
next layer

h'

32

S\

Figure: Andrej Karpathy



3D Activations

32

a hidden neuron in
next layer

O
h, h,

32

S\

Figure: Andrej Karpathy



3D Activations

/ 32 With 2 output neurons
xr a hidden neuron in
next layer roo__ r
= hy = Zx ijkWIijk +b,
i O ijk
| L
5 hrl hrz
roo_ r
h 2 Zx ijkWZijk T bz
3 ijk
3

Figure: Andrej Karpathy



3D Activations

25 With 2 output neurons

a hidden neuron in

tl roo__ r
~3o M2l

ijk
r r
h, h, . r
2 Z’X i]’k‘/‘@ijk T
32 ik

S\

Figure: Andrej Karpathy



3D Activations

/ depth dlmensmn
T==00000
o

Figure: Andrej Karpathy




3D Activations

We can keep adding

more outputs
52 depth dimension
These form a column
=
/
3

>QQQQQ in the output volume:
Figure: Andrej Karpathy

[depth x 1 x 1]




3D Activations

We can keep adding

more outputs
52 depth dimension

These form a column

>Q OO0 in the output volume:
,\ [depth x 1 x 1]

= 1/
30 Each neuron has its
3 own 3D filter and

own (scalar) bias

Figure: Andrej Karpathy



3D Activations

. / Now repeat this
across the input

~=05000¢]

LV

>

D sets of weights
(also called filters)

~ &77\

Figure: Andrej Karpathy



32

3D Activations

[

=\

32

—~50000

4

D sets of weights

(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

Weight sharing:

Each filter shares
the same weights
(but each depth
iINndex has its own
set of weights)



3D Activations

./

~=05000¢]

LV

D sets of weights
(also called filters)

~ &77\

Figure: Andrej Karpathy



3D Activations

With weight
/ sharing,
%2 this Is called

y, convolution
=0000]

LV

>

D sets of weights
(also called filters)

\\/7\

Figure: Andrej Karpathy



32

3D Activations

[

=\

32

—~50000

4

D sets of weights

(also called filters)

Figure: Andrej Karpathy

With weight
sharing,

this is called
convolution

Without weight
sharing,

this is called a
locally
connected layer



3D Activations

Output of one filter One set of vveights gives

/ /// one slice in the output

To get a 3D output of depth D,

% use D different filters

/ In practice, CNNs use many
/ filters (~64 to 1024)

(input (output
depth) depth)




3D Activations

Output of one filter One set of vveights gives

/ /// one slice in the output

To get a 3D output of depth D,

% use D different filters

/ In practice, CNNs use many
/ filters (~64 to 1024)

(input (output

depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)
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3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(

Ry

output position

first filter

nth example



3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry

output position

first filter

nth example



3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3
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output position

first filter
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32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry ;i

output position

first filter all input channels

nth example nth example



3D Activations

32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

]V 1\

output position input region

first filter all input channels

nth example nth example



3D Activations

32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]

]V 1\

output position input region

first filter all input channels

nth example nth example
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32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]
A

]V 1\

output position input region

first filter all input channels

nth example nth example first filter



3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]
A

SRy R

output position input region

first filter all input channels all channels

nth example nth example first filter



32

3

out[n, @, r, c] = np.sum(X[n,

Ry

32

M0

3D Activations

a hidden neuron in
next layer

output position

first filter

nth example

Let’s code this up in NumPy

By

Input region

all input channels

nth example

., r@:rl, cO:cl] * WO, :, :, :]1) + b|0O]
A

|\

all positions
all channels
first filter



3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]| * WO, :, :, :]) + b[0O]
A

]V NS N

output position Input region all positions

first filter all input channels all channels

nth example nth example first filter



3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)
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-
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Figure: Andrej Karpathy



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
JRCINEERENNIIITAYEENESESARTINENRESR G

one filter = one depth slice (or activation map) ( 32 fi |’[erS, each 3)(5)(5)

Activations:

BB N2

EUAAEEES
ot
= NE w1

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

»
.

Activations:

FLU O H-AEFIEY P TASCERT BETE L& P
one ﬂlterwepth slice (or activation map) (32 fi|’[erS, each 3X5X5)

BN TENR

<

i

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)

»
A

o dilulnnnu::uan-llnnmaununlullud/il

one ﬂlterwepth slice (or activation map) (
Acﬁvans:

32 filters, each 3x5x5)

<

igure: Andrej Karpathy
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/
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Output
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Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = ZXFU.,{W. +b

ijk
ijk

(channel, row, column)
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Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Input size of the input




Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O]1]0[O0([O0 (O

Output
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Input
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Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O]J]0[O0([O0(|O0

Output

Gl NGO NG NGl ROl O NGR RoR o

Ol oo O] 0| O | O

Input



Convolution:
How big is the output?

0

0

0

0

Ol oo O | OO0l OO0 )| 0O | O

Ol NGO NG ROl ol Ol NOR ROoR o




Convolution:
How big is the output?

0 O[O0 0[O0O]1010]O0
0 , 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
0 O[O0 0[O0 ]10(10]O0




Convolution:
How big is the output?

stride s

< >

OO0 [O[O[O]O0]O

< >

kernell k
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0 kernel k 0
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Convolution:
How big is the output?

stride s

« -
O]0]1]0(O0O]010]0]10(|O0
o | , 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
O]0]1]0(O0O]1010]0]10(|O0

— < - >

p width w,_ p



Convolution:
How big is the output?

stride §
< >
ojfolo|lo]Jo|o|O|O|O
0 . , 0
0 kernel| & 0
0 O | In general, the output has size:
’ ’ w. +2p—k
— | 1
0 0 Wout o |
e S —
0 0
0 0
ofolo|lo]o|oOo|O|O]|O
+—> < > —>

p width w,_ p



stride s

<

Convolution:
How big is the output?

010 O[0]0 0
0 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
010 O[0]0 0

width w,_

Example: k=3, s=1, p="1



Convolution:
How big is the output?

stride s

0010107010701 01 Example: k=3, s=1, p=1

0 § . 0

0 kernel 0 B w,+2p—k
Wout o

0 0 i ) _

0 o w.+2-3

0 0 B B

0 0 — Win

O1O0O]O0O[O0O]1O0]]O0O[O0O]101]20

p width w,_ p



Convolution:
How big is the output?

stride s
0/0]0]/0]0]0/0]0|0| Example: k=3, s=1, p=1
0 . R O
0 crne 0 wom _ in P |
0 0 - \) _
0 0 w, +2—3
. ; — 1
R S
0 0]
5 0 T Win
olololo|lo|lo|lOo|O]|oO |
VGGNet [Simonyan 2014]

p width w,_ p uses filters of this shape



Max Pooling

For most CNNs, convolution is often followed by pooling:

downsampling
32

32

Figure: Andrej Karpathy
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For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

downsampling
32 = 16
\
16

32

Figure: Andrej Karpathy
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- Creates a smaller representation while retaining the
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Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common

- Why might "avg” be a poor choice”

downsampling
32 > 16
\
16

32

Figure: Andrej Karpathy



Max Pooling

Single depth slice

1112 ]| 4
5| 6|7 |8
3(12|1]0
112 ]3| 4

max pool with 2x2 filters
and stride 2

>

Figure: Andrej Karpathy



Max Pooling

Single depth slice

11112 ] 4
5| 6|7 |8
31210
112 ]3| 4

y

max pool with 2x2 filters
and stride 2

>

What's the backprop rule for max pooling”?

Figure: Andrej Karpathy



Max Pooling

Single depth slice

11112 | 4
max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
3121|110 3| 4
11213 | 4
y

What's the backprop rule for max pooling”?
- In the forward pass, store the index that took the max

Figure: Andrej Karpathy



Max Pooling

Single depth slice

1124
max pool with 2x2 filters
516 | 7| 8 and stride 2 6 | 8
31210 3 | 4
112 | 3| 4
y

What's the backprop rule for max pooling”?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy



Example CNN
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Figure: Andrej Karpathy
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Example CNN

(Fully-connected)
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Example CNN

CONV CONV POOLCONV CONV POOL CONV CONV POOL Ec

l RelLU l ReLUl l RelLU l ReLUl RelLU RelLU (Fully-connected)
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10x3x3 conv filters, stride 1, pad 1
2X2 pOOl filters, stride 2 Figure: Andrej Karpathy
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