Convolutional Neural Networks

CS 4670 Sean Bell

http://brownsharpie.courtneygibbons.org/?p=90

Review: Setup

Review: Setup

- Goal: Find a value for parameters $\left(\theta^{(1)}, \theta^{(2)}, \ldots\right)$, so that the loss (L) is small

Review: Setup

Toy
Example:

Review: Setup

Toy
Example:

A weight somewhere in the network

Review: Setup

Toy
Example:

A weight somewhere in the network

Review: Setup

Toy
Example:

A weight somewhere in the network

Review: Setup

A weight somewhere in the network

Review: Setup

A weight somewhere in the network

Review: Setup

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
W^{(1)}, b^{(1)} \searrow \\
x \rightarrow W^{(1)} x+b^{(1)} \rightarrow h^{(1)} \rightarrow \text { Function } \\
\\
y \xrightarrow{(2)} h^{(2)} \rightarrow \cdots \rightarrow \\
\\
\\
\\
\\
\\
\\
\\
L
\end{array}\right]
\end{array} \\
& \text { Toy } \\
& \text { Example: }
\end{aligned}
$$

Review: Setup

> Toy
> Example:

Review: Setup

How do we get the gradient? Backpropagation

A weight somewhere in the network

Backprop

It's just the chain rule

Backprop

$$
\begin{gathered}
\frac{\partial L}{\partial \theta^{(n)}} \\
\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow \text { Layer } n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow \text { Layer } n+1 \leftarrow \cdots
\end{gathered}
$$

Backprop

This is what we want for each layer
$\frac{\partial L}{\partial \theta^{(n)}}$
$\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow$ Layer $n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow$ Layer $n+1 \leftarrow \cdots$

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient
$\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow$ Layer $n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow$ Layer $n+1 \leftarrow \cdots$

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer:

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

What we want

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer: given to us

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

What we want

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer: given to us

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

What we want
This is just the local gradient of layer n

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

$$
\frac{\partial L}{\partial h^{(n-1)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial h^{(n-1)}}
$$

What we want
This is just the local gradient of layer n

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

$$
\frac{\partial L}{\partial h^{(n-1)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial h^{(n-1)}}
$$

What we want
This is just the local gradient of layer n

Backprop

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

$$
\frac{\partial L}{\partial h^{(n-1)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial h^{(n-1)}}
$$

What we want

Backprop

For each layer, we compute:

[Propagated gradient to the left $]=$
[Propagated gradient from right]•[Local gradient]

Backprop

For each layer, we compute:

[Propagated gradient to the left] $=$
[Propagated gradient from right]•[Local gradient]

$$
1
$$

(Can compute immediately)

Backprop

For each layer, we compute:

[Propagated gradient to the left $]=$
[Propagated gradient from right]•[Local gradient]

(Received during backprop)
(Can compute immediately)

Backprop

Forward Propagation:

Backprop

Forward Propagation:

Backward Propagation:

Backprop

Forward Propagation:

Backward Propagation:

Backprop

Forward Propagation:

Backward Propagation:

$$
\frac{\partial L}{\partial f} \leftarrow L
$$

Backprop

Forward Propagation:

Backward Propagation:

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta^{(n)}} \\
& \text { Function } \\
& \leftarrow \frac{\partial L}{\partial f} \leftarrow L
\end{aligned}
$$

Backprop

Forward Propagation:

Backward Propagation:

$$
\begin{gathered}
\frac{\partial L}{\partial \theta^{(n)}} \\
\frac{\partial L}{\partial h^{(1)}} \leftarrow \cdots \leftarrow \square \text { Function } \\
\leftarrow \frac{\partial L}{\partial f} \leftarrow L
\end{gathered}
$$

Backprop

Forward Propagation:

Backward Propagation:
$\frac{\partial L}{\partial \theta^{(1)}}$
$\frac{\partial L}{\partial x} \leftarrow$ Function $\leftarrow \frac{\partial L}{\partial h^{(1)}} \leftarrow \cdots \leftarrow$ Function $\leftarrow \frac{\partial L}{\partial f} \leftarrow L$

Backprop

It's easy to write down the chain rule for higher dimensions
just add more subscripts and more summations

Backprop

It's easy to write down the chain rule for higher dimensions
just add more subscripts and more summations

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x}
$$

x, h scalars
(L is always scalar)

Backprop

It's easy to write down the chain rule for higher dimensions
just add more subscripts and more summations

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x} \\
& \frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}}
\end{aligned}
$$

x, h scalars
(L is always scalar)

$x, h 1 \mathrm{D}$ arrays (vectors)

Backprop

It's easy to write down the chain rule for higher dimensions
just add more subscripts and more summations

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x} \\
& \frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \\
& \frac{\partial L}{\partial x_{a b}}=\sum_{i} \sum_{j} \frac{\partial L}{\partial h_{i j}} \frac{\partial h_{i j}}{\partial x_{a b}}
\end{aligned}
$$

$$
\begin{aligned}
& x, h \text { scalars } \\
& (L \text { is always scalar) }
\end{aligned}
$$

$$
x, h \text { 1D arrays (vectors) }
$$

$x, h 2 \mathrm{D}$ arrays

Backprop

It's easy to write down the chain rule for higher dimensions
just add more subscripts and more summations

$$
\begin{array}{ll}
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x} & x, h \text { scalars } \\
\frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} & x, h \text { 1D arrays (vectors) } \\
\frac{\partial L}{\partial x_{a b}}=\sum_{i} \sum_{j} \frac{\partial L}{\partial h_{i j}} \frac{\partial h_{i j}}{\partial x_{a b}} & x, h 2 \mathrm{D} \text { arrays } \\
\frac{\partial L}{\partial x_{a b c}}=\sum_{i} \sum_{j} \sum_{k} \frac{\partial L}{\partial h_{i j k}} \frac{\partial h_{i j k}}{\partial x_{a b c}} & x, h 3 \mathrm{D} \text { arrays }
\end{array}
$$

Example: Mean Subtraction (for a single input)

Example: Mean Subtraction (for a single input)

- Ok, so how do we actually derive the backwards pass? Let's walk through an example together.

Example: Mean Subtraction (for a single input)

- Ok, so how do we actually derive the backwards pass? Let's walk through an example together.
- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}
$$

Example: Mean Subtraction (for a single input)

- Ok, so how do we actually derive the backwards pass? Let's walk through an example together.
- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}
$$

(here, "i" and " k " are channels)

Example: Mean Subtraction (for a single input)

- Ok, so how do we actually derive the backwards pass? Let's walk through an example together.
- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}
$$

(here, "i" and " k " are channels)

- For backprop, we just need the local derivative

Example: Mean Subtraction (for a single input)

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer:

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{aligned}
& \text { (backprop } \\
& \text { aka chain rule) }
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right)
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right) \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}} \delta_{i j}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}}
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right) \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}} \delta_{i j}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}} \\
& =\frac{\partial L}{\partial h_{j}}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}}
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right) \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}} \delta_{i j}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}} \\
& =\frac{\partial L}{\partial h_{j}}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}} \quad \text { Done! }
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

$$
\begin{aligned}
& h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k} \\
& \frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}
\end{aligned}
$$

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$
- In this case, they're identical operations!

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$
- In this case, they're identical operations!
- Usually the forwards pass and backwards pass are similar but not the same.

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$
- In this case, they're identical operations!
- Usually the forwards pass and backwards pass are similar but not the same.
- Derive it by hand, and check it numerically

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward(X): return X - np.mean(X, axis=1)

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:

def forward(X):

Dimension mismatch return X - np.mean(X, axis=1)

Example: Mean Subtraction (for a single input)
 - Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward(X):
Dimension mismatch return X - np.mean(X, axis=1)

You need to broadcast properly:
def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]

Example: Mean Subtraction (for a single input)
 - Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward(X):
Dimension mismatch return X - np.mean(X, axis=1)

You need to broadcast properly:
def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]
This also works:
def forward(X):
return X - np.mean(X, axis=1, keepdims=True)

Example: Mean Subtraction (for a single input)

The backward pass is easy:

```
def backward(dh):
    return forward(dh)
```

(Remember they're usually not the same)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \\
& \rightarrow L_{i}
\end{aligned}
$$

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")

(ground truth labels)

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

(input) (scores) (probabilities)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")
(ground truth labels)
(here, "i" are
different examples)

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

(input) (scores) (probabilities)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")

(ground truth labels)

(here, "i" are different examples)

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

(input) (scores) (probabilities)
$p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}$
(Softmax)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")

(ground truth labels)

(here, "i" are
different examples)

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

(input) (scores) (probabilities)
$p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}$
$L_{i}=-\log p_{i, y_{i}}$
(Softmax)
(Cross-entropy)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss (together this is often called "Softmax loss")

(ground truth labels)

(here, "i" are different examples)

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

(input) (scores) (probabilities)
(loss)
$p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}$
(Softmax)
$L_{i}=-\log p_{i, y_{i}}$

$$
L=\frac{1}{N} \sum_{i} L_{i}
$$

(Avg. over examples)

Example: Softmax (for N inputs)

Example: Softmax (for N inputs)

Derivative: $\frac{\partial L}{\partial f_{i, j}}=\frac{p_{i, j}-t_{i, j}}{N}$

Example: Softmax (for N inputs)

$y_{i} \longrightarrow x_{i} \rightarrow \cdots \rightarrow f_{i} \rightarrow$ Sottmax $\rightarrow p_{i} \rightarrow \begin{gathered}\text { Cross- } \\ \text { Entropy }\end{gathered}$$L_{i}$

Derivative: $\frac{\partial L}{\partial f_{i, j}}=\frac{p_{i, j}-t_{i, j}}{N}$ where $\left.\begin{array}{r}t_{i}=\left[\begin{array}{lll}0 & \ldots & 1\end{array}\right] \\ \text { (Entry } y_{i} \text { set to 1) }\end{array}\right]$

Example: Softmax (for N inputs)

Derivative: $\left.\left|\frac{\partial L}{\partial f_{i, j}}\right|=\frac{p_{i, j}-t_{i, j}}{N} \quad \begin{array}{r}\left.\text { where } \begin{array}{r}t_{i}=\left[\begin{array}{lll}0 & \ldots & 1\end{array} \quad .0\right.\end{array}\right] \\ \text { (Entry } y_{i} \text { set to 1) }\end{array}\right]$

Example: Softmax (for N inputs)

Derivative: $\frac{\partial L}{\partial f_{i, j}} \left\lvert\,=\frac{p_{i, j}-t_{i, j}}{N} \quad \begin{array}{r}\left.\text { where } \begin{array}{rll}t_{i}=\left[\begin{array}{lll}0 & \ldots & 1\end{array} \ldots\right. \\ \text { (Entry } y_{i} \text { set to 1) }\end{array}\right]\end{array}\right.$
(Try deriving this - it's tricky but not too hard)

Example: Softmax (for N inputs)

Derivative: $\frac{\partial L}{\frac{\partial f_{i, j}}{}}=\frac{p_{i, j}-t_{i, j}}{N} \quad \begin{array}{r}\left.\text { where } \begin{array}{l}t_{i}=\left[\begin{array}{lll}0 & \ldots & 1 \ldots\end{array}\right] \\ \text { (Entry } y_{i} \text { set to 1) }\end{array}\right]\end{array}$
(Try deriving this - it's tricky but not too hard)

Now we can continue backpropagating to the layer before "f"

Example: Softmax (for N inputs)

Let's code this up in NumPy: def softmax (f):
$\exp f=n p . \exp (f)$

$$
e^{f_{i, j}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)

Example: Softmax (for N inputs)

Let's code this up in NumPy: def softmax(f):
exp_f $=n p . \exp (f)$

$$
p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)
Doesn't work - what's the problem this time?

Example: Softmax (for N inputs)

Let's code this up in NumPy:

def softmax (f):

exp_f = np.exp(f)

$$
p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)
Doesn't work - what's the problem this time?

- What if there is the value 1000 appears in " f "?

Example: Softmax (for N inputs)

Let's code this up in NumPy:

def softmax (f):

exp_f $=n p . \exp (f)$

$$
p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)
Doesn't work - what's the problem this time?

- What if there is the value 1000 appears in " f "?

Overflow \longrightarrow we get inf/inf $=\mathrm{NaN}$

Example: Softmax (for N inputs)

Let's code this up in NumPy:

def softmax (f):

exp_f = np.exp(f)

$$
p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)
Doesn't work - what's the problem this time?

- What if there is the value 1000 appears in " f "?

Overflow —> we get inf/inf $=\mathrm{NaN}$

- What if the largest value is -1000 ?

Example: Softmax (for N inputs)

Let's code this up in NumPy:

def softmax(f):

$\exp f=n p . \exp (f)$

$$
p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)
Doesn't work - what's the problem this time?

- What if there is the value 1000 appears in "f"?

Overflow —> we get inf/inf = NaN

- What if the largest value is -1000 ?

Underflow \longrightarrow we get $0 / \mathrm{O}=\mathrm{NaN}$

Example: Softmax (for N inputs)

Let's code this up in NumPy:
def softmax (f):
exp_f = np.exp(f)

$$
p_{i, j}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

return exp_f / np.sum(exp_f, axis=1, keepdims=True)
Doesn't work - what's the problem this time?

- What if there is the value 1000 appears in " f "?

Overflow —> we get inf/inf = NaN

- What if the largest value is -1000 ?

Underflow \longrightarrow we get $0 / \mathrm{O}=\mathrm{NaN}$
This expression is numerically unstable

Example: Softmax (for N inputs)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change "p":

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change "p":

$$
p_{i, j}=\frac{e^{f_{i, j}-C}}{\sum_{k} e^{f_{j, k}-C}}=\frac{e^{-C} e^{f_{i, j}}}{\sum_{k} e^{-C} e^{f_{i, k}}}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change "p":

$$
p_{i, j}=\frac{e^{f_{i, j}-C}}{\sum_{k} e^{f_{j, k}-C}}=\frac{e^{-C} e^{f_{i, j}}}{\sum_{k} e^{-C} e^{f_{i, k}}}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

If we choose " C " to be the max, then it works:

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change "p":

$$
p_{i, j}=\frac{e^{f_{i, j}-C}}{\sum_{k} e^{f_{j, k}-C}}=\frac{e^{-C} e^{f_{i, j}}}{\sum_{k} e^{-C} e^{f_{i, k}}}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

If we choose " C " to be the max, then it works:

- If a large value appears in "f", then that value will become 1 and all others will be 0 (avoiding overflow)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change " p ":

$$
p_{i, j}=\frac{e^{f_{i, j}-C}}{\sum_{k} e^{f_{j, k}-C}}=\frac{e^{-C} e^{f_{i, j}}}{\sum_{k} e^{-C} e^{f_{i, k}}}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

If we choose " C " to be the max, then it works:

- If a large value appears in "f", then that value will become 1 and all others will be 0 (avoiding overflow)
- If all values in " f " are large negative, then they will be shifted up towards 0 (avoiding underflow)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change " p ":

$$
p_{i, j}=\frac{e^{f_{i, j}-C}}{\sum_{k} e^{f_{j, k}-C}}=\frac{e^{-C} e^{f_{i, j}}}{\sum_{k} e^{-C} e^{f_{i, k}}}=\frac{e^{f_{i, j}}}{\sum_{k} e^{f_{i, k}}}
$$

If we choose "C" to be the max, then it works:

- If a large value appears in "f", then that value will become 1 and all others will be 0 (avoiding overflow)
- If all values in " f " are large negative, then they will be shifted up towards 0 (avoiding underflow)
def softmax(f):
$\exp f=n p \cdot \exp (f-n p \cdot \max (f, a x i s=1$, keepdims=True))
return exp_f / np.sum(exp_f, axis=1, keepdims=True)

What about the weights?

To get the derivative of the weights, use the chain rule again!

What about the weights?

To get the derivative of the weights, use the chain rule again! Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights?

To get the derivative of the weights, use the chain rule again! Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{aligned}
& W, b \downarrow \\
x \rightarrow \text { Layer } & \rightarrow h \quad h=h(x ; W)
\end{aligned}
$$

What about the weights?

To get the derivative of the weights, use the chain rule again! Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{aligned}
x & \rightarrow \text { Layer } \rightarrow h \quad h=h(x ; W) \\
\frac{\partial L}{\partial W_{i j}} & =\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}}
\end{aligned}
$$

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{aligned}
x & \rightarrow+\text { Layer } \\
\frac{\partial L}{\partial W_{i j}}= & \sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}}
\end{aligned} \quad h=h(x ; W)
$$

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{array}{r}
W, b \downarrow \\
x \rightarrow \text { Layer } \rightarrow h \quad h=h(x ; W) \\
\frac{\partial L}{\partial W_{i j}}=\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}} \quad \frac{\partial L}{\partial b_{i}}=\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial b_{i}} \\
\text { (the number of subscripts and summations changes } \\
\text { depending on your layer and parameter sizes) }
\end{array}
$$

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{aligned}
& x \rightarrow+\text { Layer } \\
& \frac{\partial L}{\partial W_{i j}}= \sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}} \quad h=h(x ; W) \\
& \frac{\partial L}{\partial b_{i}}=\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial b_{i}}
\end{aligned}
$$

(the number of subscripts and summations changes depending on your layer and parameter sizes)

HW2: you will derive this for various layers.

Recap

Forward Propagation:

Recap

Forward Propagation:

Backward Propagation:

Recap

Forward Propagation:

Backward Propagation:

Recap

Forward Propagation:

Backward Propagation:

$$
\frac{\partial L}{\partial f} \leftarrow L
$$

Recap

Forward Propagation:

Backward Propagation:

Recap

Forward Propagation:

Backward Propagation:

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta^{(n)}} \\
& \leftarrow \text { Function } \leftarrow \frac{\partial L}{\partial f} \leftarrow L
\end{aligned}
$$

Recap

Forward Propagation:

Backward Propagation:

$\frac{\partial L}{\partial \theta^{(1)}}$
$\frac{\partial L}{\partial x} \leftarrow$ Function $\leftarrow \frac{\partial L}{\partial h^{(1)}} \leftarrow \cdots \leftarrow$ Function
$\frac{\partial L}{\partial f} \leftarrow L$

Questions?

30s cat picture break

CNNs

It's just neural networks with 3D activations

What shape should the activations have?

- The input is an image, which is 3D
(RGB channel, height, width)

What shape should the activations have?

- The input is an image, which is 3D
(RGB channel, height, width)
- We could flatten it to a 1D vector, but then we lose structure

What shape should the activations have?

- The input is an image, which is 3D
(RGB channel, height, width)
- We could flatten it to a 1D vector, but then we lose structure
- What about keeping everything in 3D?

3D Activations

before:

(1D vectors)

Figure: Andrej Karpathy

3D Activations

before:
 layer
hidden layer
(1D vectors)
now:

(3D arrays)

3D Activations

All Neural Net activations arranged in 3 dimensions:

Figure: Andrej Karpathy

3D Activations

All Neural Net activations arranged in 3 dimensions:

For example, a CIFAR-10 image is a $3 \times 32 \times 32$ volume (3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

3D Activations

 1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations:

3D Activations:

Figure: Andrej Karpathy

3D Activations

- The input is $3 \times 32 \times 32$
- This neuron depends on a $3 \times 5 \times 5$ chunk of the input
- The neuron also has a $3 \times 5 \times 5$ set of weights and a bias (scalar)

3D Activations

Example: consider the region of the input " x^{r} "

With output neuron h^{r}

Figure: Andrej Karpathy

3D Activations

Example: consider the region of the input " x^{r} "

With output neuron h^{r}

Then the output is:

$$
h^{r}=\sum_{i j k} x_{i j k}^{r} W_{i j k}+b
$$

Figure: Andrej Karpathy

3D Activations

Example: consider the region of the input " x^{r} ",

With output neuron h^{r}

Then the output is:

$$
h^{r}=\sum_{i j k} x_{i j k}^{r} W_{i j k}+b
$$

Sum over 3 axes

3D Activations

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

With 2 output neurons

$$
\begin{aligned}
& h_{1}^{r}=\sum_{i j k} x_{i j k}^{r} W_{1 i j k}+b_{1} \\
& h_{2}^{r}=\sum_{i j k} x_{i j k}^{r} W_{2 i j k}+b_{2}
\end{aligned}
$$

Figure: Andrej Karpathy

3D Activations

With 2 output neurons

$$
\begin{aligned}
& h_{1}^{r}=\sum_{i j k} x_{i j k}^{r} y_{[i j k}+h_{\text {佰 }} \\
& h_{2}^{r}=\sum_{i j k} x_{i j k}^{r} W_{\text {䜣 }}+h_{\text {白 }}
\end{aligned}
$$

Figure：Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

We can keep adding more outputs

Figure: Andrej Karpathy

3D Activations

We can keep adding more outputs

These form a column in the output volume: [depth $\times 1 \times 1$]

Each neuron has its own 3D filter and own (scalar) bias

3D Activations

Now repeat this across the input

Figure: Andrej Karpathy

3D Activations

Now repeat this across the input

Weight sharing:
Each filter shares the same weights (but each depth index has its own set of weights)

3D Activations

Figure: Andrej Karpathy

3D Activations

With weight sharing, this is called convolution

Figure: Andrej Karpathy

3D Activations

With weight sharing, this is called convolution

Without weight sharing, this is called a locally
connected layer

3D Activations

Output of one filter

(input
depth)

One set of weights gives one slice in the output

To get a 3D output of depth D, use D different filters

In practice, CNNs use many filters (~64 to 1024)

3D Activations

Output of one filter

(input
depth)

One set of weights gives one slice in the output

To get a 3D output of depth D, use D different filters

In practice, CNNs use many filters (~64 to 1024)

All together, the weights are $\mathbf{4}$ dimensional:
(output depth, input depth, kernel height, kernel width)

3D Activations

Let's code this up in NumPy
out $[n, 0, r, c]=$

3D Activations

Let's code this up in NumPy
out $[n, 0, r, c]=$
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy
out $[n, 0, r, c]=$

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

out $[\mathrm{n}, 0, \mathrm{r}, \mathrm{c}]=\mathrm{np} . \operatorname{sum}($

$\uparrow \uparrow \bigvee_{\text {output position }}^{\uparrow}$
first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

```
out[n, 0, r, c] = np.sum(X[n, :, r0:r1, c0:c1]
    \uparrow}\uparrow
    output position
```

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

3D Activations

Let's code this up in NumPy

3D Activations

Let's code this up in NumPy

3D Activations

Let's code this up in NumPy

```
out[n, 0, r, c] = np.sum(X[n, :, r0:r1, c0:c1] * W[0, :, :, :]) + b[0]
```


first filter
all input channels
$n^{\text {th }}$ example
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

```
out \([n, 0, r, c]=n p \cdot \operatorname{sum}(X[n,: r 0: r 1, c 0: c 1] * W[0,:,:,:])+b[0]\)
```


first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

$n^{\text {th }}$ example

$\mathrm{n}^{\text {th }}$ example

all input channels

all positions all channels

3D Activations

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)
 one filter = one depth slice (or activation map) (32 filters, each $3 \times 5 \times 5$)

Activations:

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)

Questions?

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Weights

Output

Input

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Recall that at each position, we are doing a 3D sum:
$h^{r}=\sum_{i j k} x^{r}{ }_{i j k} W_{i j k}+b$
(channel, row, column)

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

- Notice that with certain strides, we may not be able to cover all of the input

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

- Notice that with certain strides, we may not be able to cover all of the input
- The output is also half the size of the input

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: How big is the output?

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Convolution: How big is the output?

0	0	0	0	0	0	0	0	0
0								0
0		kernel	k				0	
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Convolution: How big is the output?

stride s

0	0	0	0	0	0	0	0	0
0								0
0		kernel	k				0	
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Convolution: How big is the output?

0	0	0	0	0	0	0	0	0
0								0
0			rnel	k				0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0
			wid	dh				

Convolution: How big is the output?

0	0	0	0	0	0	0	0	0
0								0
0			rnel	k				0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0
$\stackrel{ }{p}$			wid	th				

Convolution: How big is the output?

stride s

0 0 0 0 0 0	0	0	0					
0								0
0		kernel	k				0	
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

In general, the output has size:

$$
w_{\mathrm{out}}=\left\lfloor\frac{w_{\mathrm{in}}+2 p-k}{s}\right\rfloor+1
$$

Convolution: How big is the output?

Example: $\mathrm{k}=3, \mathrm{~s}=1, \mathrm{p}=1$

Convolution: How big is the output?

stride s

0	0	0	0	0	0	0	0	0
0								0
0		kernel	k				0	
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0
width $w_{\text {in }}$								
\qquad								

Example: $\mathrm{k}=3, \mathrm{~s}=1, \mathrm{p}=1$

$$
\begin{aligned}
w_{\text {out }} & =\left\lfloor\frac{w_{\text {in }}+2 p-k}{s}\right\rfloor+1 \\
& =\left\lfloor\frac{w_{\text {in }}+2-3}{1}\right\rfloor+1 \\
& =w_{\text {in }}
\end{aligned}
$$

Convolution: How big is the output?

stride s

Example: $\mathrm{k}=3, \mathrm{~s}=1, \mathrm{p}=1$

$$
\begin{aligned}
w_{\text {out }} & =\left\lfloor\frac{w_{\text {in }}+2 p-k}{s}\right\rfloor+1 \\
& =\left\lfloor\frac{w_{\text {in }}+2-3}{1}\right\rfloor+1 \\
& =w_{\text {in }}
\end{aligned}
$$

VGGNet [Simonyan 2014] uses filters of this shape

Max Pooling

For most CNNs, convolution is often followed by pooling:

32

Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the most important information

32

Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the most important information
- The "max" operation is the most common
 downsampling

32

Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the most important information
- The "max" operation is the most common
- Why might "avg" be a poor choice?

32

downsampling

32

Max Pooling

Single depth slice

Max Pooling

Single depth slice

What's the backprop rule for max pooling?

Max Pooling

Single depth slice

What's the backprop rule for max pooling?

- In the forward pass, store the index that took the max

Max Pooling

Single depth slice

What's the backprop rule for max pooling?

- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Example CNN

CONV CONV POOL $\downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \underset{\downarrow}{\text { ReLU }} \downarrow$

Figure: Andrej Karpathy

Example CNN

CONV CONV POOLCONV CONV POOLCONV CONV POOL

Figure: Andrej Karpathy

Example CNN

CONV CONV POOLCONV CONV POOLCONV CONV POOL FC

 $\stackrel{\text { ReLU }}{\downarrow} \downarrow \stackrel{\text { ReLU }}{\downarrow} \downarrow \downarrow \begin{gathered}\text { ReLU } \\ \downarrow \\ \downarrow\end{gathered} \underset{\downarrow}{\text { ReLU }} \downarrow \downarrow \downarrow \underset{\downarrow}{\downarrow} \downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \underset{\downarrow}{\text { (Fully-connected) }}$

Example CNN

CONV CONV POOLCONV CONV POOLCONV CONV POOL FC

$10 \times 3 \times 3$ conv filters, stride 1, pad 1
2×2 pool filters, stride 2

Questions?

