| — |
Convolutional A% g
Neural i

™ ERENTIATE tHE Mormeeﬁi
Networks Qiéiﬁmw Nepe.. 4

CS 4670 - \

Sean Bell

Jr—
.. DIFFERENTI ATE THE BABY.

-
How | LEPreNED THE

OHAIN RULE.

%&» © Courriey G1BBoNS

http://brownsharpie.courtneygibbons.org/?p=90

Review: Setup

(1)
AN

Function

— h—

(2)
07N

Function

— h(2)_.

—

f
l
. L

Review: Setup
9(1) \ 9(2) \

X — | Function —>h(1)—> Function | — h(z)—>--- —

f
l
L

y .
- Goal: Find a value for parameters (8" 8@, ...), so that
the loss (L) is small

Review: Setup

— h—

(2)
07N

Function

— h(2)_.

—

f
l
. L

Toy
Example:

Review: Setup

x = | W%+ — ()

(2)
07N

Function

— h(2) > eee —

Example:

| 0SS

. (1)
W 12

A weight somewhere Iin the network

Review: Setup

(2)
07N

X — W(l)x+b(1) —>h(1)—> Function — h(z)_> ces —» f
Y » L
Toy L4
Example:
Loss
o . (1)
~ W,

A weight somewhere Iin the network

Review: Setup

WOx+ 50| — D

(2)
07N

Function

r\ X (1)
e U4 12

A weight somewhere Iin the network

Review: Setup

WOx+ 50| — D

(2)
07N

Function

r\ X (1)
e U4 12

A weight somewhere Iin the network

Review: Setup

WOx+ 50| — D

(2)
07N

Function

A weight somewhere Iin the network

Review: Setup

WOx+ 50| — D

(2)
07N

Function

f
l
L

A weight somewhere Iin the network

>

(Gradient)

Review: Setup

WOx+ 50| — (D

(2)
07N

Function

f
l
L

A weight somewhere Iin the network

>

(Gradient)

Review: Setup
W(l), b(l)\ 9(2) \

X — W(l)x+b(1) —>h(1)—> Function — h(z)—> ces —» f
l
Y - L
Toy LI AABL Gradient
. radlen
Example: \ W
How do we get the gradient? Backpropagation
~—_ f
O . (1)
- W

A weight somewhere Iin the network

Backprop

lt's just the chain rule

oL

BacCKprop

oL

067\

T ah(n—l))

Layer n

oL

on"

Layer n +1

BacCKprop

This is what we JL
want for each layer)
00 \

oL oL

e < Layer n |+ — | Layer n +1

oh" oh™

BacKprop

This Is what we JL.

want for each layer To compute it, we need to

0™ ‘\ propagate this gradient

oL oL

" 3D * Layer n |+ ah(”)<

Layer n +71| <« ---

BacKprop

This Is what we JL.

want for each layer To compute it, we need to

0™ ‘\ propagate this gradient

oL oL

" 3D * Layer n |+ ah(”)<

Layer n +71| <« ---

For each layer:

BacKprop

This Is what we JL.

want for each layer To compute it, we need to

0™ ‘\ propagate this gradient

oL oL

" 3D * Layer n |+ ah(”)<

Layer n +7| <« ---

For each layer:

oL | OJL oh™
20 Jp™ ' 9™

What we want

BacKprop

This Is what we JL.

want for each layer To compute it, we need to

0™ ‘\ propagate this gradient
oL oL

s < Layer n |+) Layer n +71| < -

oh'" ™" AD

oL | | L | oh'™
20" [9p™ ' 9™

What we want

BacCKprop

This Is what we JL

want for each layer To compute it, we need to

06" ‘\ propagate this gradient
oL dL

e « Layer n |+ — |Layern +71| « ---

oh" oh™

For each Iayer 9“'3

oL oL ||oh™
H(n) h(n) 9(”)

What we want
This Is just the local gradient of layer n

BacCKprop

This Is what we JL

want for each layer To compute it, we need to

0™ ‘\ propagate this gradient

oL oL) 7
ah(n_l) Layer n ah(”) ayer n +
us
. on 10
For each Iayer 9“'e

oL | | oL ||oh™ oL oL oh"™
9<n> h(”) 20 8h(” 1) ahm) ' D

What we want
This Is just the local gradient of layer n

BacCKprop

This Is what we JL

want for each layer To compute it, we need to

06" ‘\ propagate this gradient
oL aL

e « Layer n |+ Layer n +7| «— -

ah(n 1) (n)

1o U°
For each layer y \

oL | | oL |[on" oL | oh'
9(11) h(n) 9(71) ah(n 1) h(n) ah(n—l)

What we want
This Is just the local gradlent of layer n

BacCKprop

This Is what we JL

want for each layer To compute it, we need to

06" ‘\ propagate this gradient
oL aL

e « Layer n |+ Layer n +7| «— -

ah(n 1) (n)

1o U°
For each layer y \

oL | | oL |[on" oL || oh'
9(11) h(n) 9(71) ah(n 1) h(n) h(n 1)

What we want
This Is just the local gradlent of layer n

BacCKprop

For each layer, we compute:

| Propagated gradient to the left | =
| Propagated gradient from right |-[Local gradient |

BacCKprop

For each layer, we compute:

| Propagated gradient to the left | =
| Propagated gradient from right |-[Local gradient |

\

(Can compute immediately)

BacCKprop

For each layer, we compute:

| Propagated gradient to the left | =
| Propagated gradient from right |-[Local gradient |

e \

(Received during backprop) (Can compute immediately)

(1)
AN

Function

BacCKprop

Forward Propagation:

—>h(1)—>... —>

(n)
AN

Function

(1)
AN

X — | Function

BacCKprop

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function

(1)
AN

X — | Function

BacCKprop

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function

(1)
AN

X — | Function

BacCKprop

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function

(1)
AN

X — | Function

BacCKprop

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function | — f—» L
oL
00" ™\
Function <—a—L — [
df

(1)
AN

X — | Function

BacCKprop

Forward Propagation:

(n)
AN

Backward Propagation:

- h(l) — ... — | Function
oL
(n)
. 00" ™\
ah(1)< -« «— | Function

BacCKprop

Forward Propagation:

(1)
AN

X —| Function |— P — ..o —

Backward Propagation:

oL

00"
o T o
ax «— | Function |+ ah(1)<

(n)
AN

Function

oL

06" ™\,

co0o o0 ¢ —

Function

BacCKprop

it's easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

BacCKprop

it's easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

B_L _ JdL oh x,h scalars
ox oh dx (L is always scalar)

BacCKprop

it's easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

B_L _ JdL oh x,h scalars
ox oh dx (L is always scalar)

L < dL oh

B_xj — . oh BXJ. x,h 1D arrays (vectors)

BacCKprop

it's easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

B_L _ JdL oh x,h scalars
ox oh dx (L is always scalar)
oL 2 dL oh, 21D (vectors)
: arrays (vectors
ax, “oh, ox, g YRR
dL oh,
— = 22 x,h 2D arrays

Bh ox,,

Backprop

it's easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

B_L _ JdL oh x,h scalars

dx oh dx (L is always scalar)

oL dL oh,

Bx 2 oh, 8x x,h 1D arrays (vectors)
dL oh,

—_Ezah ox. x,h 2D arrays

dL oh,
Bx _;Lzah ox x,h 3D arrays

ijk

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

* Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

Example: Mean Subtraction
(for a single input)

* Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

 Example layer: mean subtraction:

1
h =x, Dzk‘xk

Example: Mean Subtraction
(for a single input)

* Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

 Example layer: mean subtraction:

1 TR 1’)]
h = x, Zxk (here, “I" and "k
D=

are channels)

Example: Mean Subtraction
(for a single input)

* Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

 Example layer: mean subtraction:

1 TR 1’)]
h = x, Zxk (here, “I” and "k
D=

are channels)

* [For backprop, we just need the local derivative

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

1
e Forward: hi:Xi——EXk
D=

Example: Mean Subtraction
(for a single input)

|
e Forward: hl-=xi——2xk
D7

e Jaking the derivative of the layer:

Example: Mean Subtraction
(for a single input)

1
* Forwara: hi=xi——2xk
D k

 Taking the derivative of the layer: oy =0, L
dx, " D

Example: Mean Subtraction
(for a single input)

1
» Forward: I =x, - —Exk

e Jaking the derivative of the layer: a—h

1
\f D

5
. O else)

4 1 i:j

Example: Mean Subtraction
(for a single input)

1
* Forwara: hi=xi——2xk
D k

. . 1
 Taking the derivative of the layer: gh =0~ —
X .
OL < OLOh (backprop \
dx, “T'oh dx; akachainrule) , N
1 =

0, =3

X 0 else

Example: Mean Subtraction
(for a single input)

1
* Forwara: hi=xi——2xk
D k

. . 1
 Taking the derivative of the layer: gh =0~ —
X .
OL < JL Ok (backprop \
dx, “T'oh dx; akachainrule) , \

aL 1 ij
:Zﬁ(@j_g) X 0 else)

Example: Mean Subtraction
(for a single input)

1
* Forwara: hi=xi——2xk
D k

. 1
 Taking the derivative of the layer: gh =0~ —
X .
OL 0Lk (backprop \
dx, “T'oh dx; akachainrule) , i
2 BL(|) 0, =1
=) —| 0, —— X 0 else
—~oh\ " D
L 1 L
_yoLs 1§l

ia}liijDiahi

Example: Mean Subtraction
(for a single input)

1
* Forwara: hi=xi——2xk
D k

 Taking the derivative of the layer: gil = lj—%
OL 0Lk (backprop \
dx, “T'oh dx; akachainrule) , i
:Ea_L(ﬁ.._l) \By:i 0 else
—~oh\ " D
_y oLy lyoL
~oh. ' D oh
~dL 1 o dL

oh, D*“dh,

Example: Mean Subtraction
(for a single input)

1
* Forwara: hi=xi——2xk
D k

. . 1
 Taking the derivative of the layer: gh =0~ —
X .
JdL 9L Jh (backprop] \
dx, “T'oh dx; akachainrule) , i
2 BL(|) 0, =1
=) —| 0, —— X 0 else
~odh.\ " D
_y oLy lgdL
~oh. ' D*“oh
L 1 < dL
= Done!

oh, D*“dh,

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

1
e Forward: h, =X, — —Zxk
D%

e Backward: 2=_2&=_ - N &
dx, dh, DT oh,

0L OL | oL

Example: Mean Subtraction
(for a single input)
e Forward: hi:xi_%Z‘xk

e Backward: 9L _9dL 1$ 9dL

dx, dh, DT oh,

* |n this case, they're identical operations!

Example: Mean Subtraction
(for a single input)
Forward: A =x,— %Z‘xk

Backward: 9L _9dL 1 dL

ox, oh D“on
In this case, they're identical operations!

Usually the forwards pass and backwards pass are
similar but not the same.

Example: Mean Subtraction
(for a single input)

1
 Forward: h, =X, — —Zxk
D=

o Backward: 9L _9L 1§ 9dL

ox, oh D“on
* |n this case, they're identical operations!

e Usually the forwards pass and backwards pass are
similar but not the same.

* Derive it by hand, and check it numerically

Example: Mean Subtraction
(for a single input)

1
* Forward: h,-=xi——2xk
D

Let's code this up in NumPy:

Example: Mean Subtraction
(for a single input)

|
¢ FOrwaI’d: hi :xi__zxk
D k

Let's code this up in NumPy:

def forward(X):
return X - np.mean(X, axis=1)

Example: Mean Subtraction
(for a single input)

1
* Forward: h,-=xi——2xk
D k

Let's code this up in NumPy:

def forward(X): Dimension mismaitch
return X - np.mean(X, axis=1)

Example: Mean Subtraction
(for a single input)

1
* Forward: hi=xi——zxk
D k

Let's code this up in NumPy:

def forward(X): Dimension mismaitch
return X - np.mean(X, axis=1)

You need to broadcast properly:

def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]

Example: Mean Subtraction
(for a single input)

1
* Forward: hi=xi——zxk
D k

Let's code this up in NumPy:

def forward(X): Dimension mismaitch
return X - np.mean(X, axis=1)

You need to broadcast properly:

def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]

This also works:

def forward(X):
return X - np.mean(X, axis=1, keepdims=True)

Example: Mean Subtraction
(for a single input)

The backward pass is easy:

def backward(dh):
return forward(dh)

(Remember they’re usually not the same)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

Example: Softmax (for N inputs)

Let's assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

Cross- I

X.— 0 — ﬁ — Softmax — pi_> EntrOpy i

Example: Softmax (for N inputs)

Let’'s assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

(ground truth labels)
Y, —

X, = =0 =]L; — | Softmax | — p.—

Cross-
Entropy Li

(input) (scores) (probabilities) (loss)

Example: Softmax (for N inputs)

Let’'s assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

(ground truth labels) ~(here, "I" are
different examples)
Y, —
Cross-
X, T Softmax D, Entropy L

(input) (scores) (probabilities) (loss)

Example: Softmax (for N inputs)

Let’'s assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

(ground truth labels) (here, "I" are
different examples)
Y, —
Cross-
X, T Softmax D, Entropy | L
(input) (scores) (probabilities) (loss)

e
D= S
L,J efz,k
k

(Softmax)

Example: Softmax (for N inputs)

Let’'s assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

(ground truth labels) ~ (here, "I" are
different examples)
Y, —
Cross-
X, T Softmax D, Entropy | L
(input) (scores) (probabilities) (loss)

el
pi,j — Eefi,k Li p— —Ingi,yi
k

(Softmax) (Cross-entropy)

Example: Softmax (for N inputs)

Let’'s assume we are using Softmax and Cross-entropy loss
(together this is often called “Softmax loss”)

(ground truth labels) ~ (here, "I" are
different examples)
Y, —
Cross-
X, T Softmax D, Entropy | L
(input) (scores) (probabilities) (loss)

e’
Pij = Y e L;=-logp,, L= %Z L
k z

(Softmax) (Cross-entropy) (Avg. over examples)

Example: Softmax (for N inputs)

Softmax

Cross-
Entropy

Example: Softmax (for N inputs)

Derivative:

oL _ pi;i— 1

df.

Softmax

N

Cross-
Entropy

Example: Softmax (for N inputs)

X.— o0 — fl — | Softmax

Derivative:

of, N

—>pi—>

Cross-
Entropy

oL _ Pii=t; where t. =10 ...1...0]

(Entry y. setto 1)

Example: Softmax (for N inputs)

Y

i
X, — - —>—> Softmax

\

—>pi—>

Cross-
Entropy

Derivative: d _ Pi;— b, where t. =10 ...1...0]
of| N

(Entry y. setto 1)

Example: Softmax (for N inputs)

Y

X

Derivative; J :p
of,| N

l
. —» eeoe —>f —
l l

Softmax

—>pi—>

Cross-
Entropy

i —bij where t.=[0 ... 1...0]
(Entry y. setto 1)

(Try deriving this — it's tricky but not too hard)

Example: Softmax (for N inputs)

Y

l
X.— oo —>—> Softmax — p —» Cross- — L
l : l Entropy l

\

OL|_Pii=t; where t,=[0 ...1...0]
df. N (Entry ¥, setto 1)

Derivative:

(Try deriving this — it's tricky but not too hard)

Now we can continue backpropagating to the layer betore “f”

Example: Softmax (for N inputs)
Ji

e’
Let's code this up in NumPy: Pij = Eefi,k
k

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1, keepdims=True)

Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?

Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Overflow —> we get int/inf = NaN

Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Overflow —> we get int/inf = NaN
- What if the largest value is -10007

Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Overflow —> we get int/inf = NaN

- What if the largest value is -10007
Underflow —> we get 0/0 = NaN

Example: Softmax (for N inputs)
Ji

def softmax(f):
exp_f = np.exp(f)
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

e’
Let's code this up in NumPy: Pij = Eefi,k
k

Doesn’t work — what'’s the problem this time?
- What it there is the value 1000 appears in “t"*?

Overflow —> we get int/inf = NaN

- What if the largest value is -10007
Underflow —> we get 0/0 = NaN

This expression is numerically unstable

Example: Softmax (for N inputs)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:
f -C —C f

o’
Pi; = Z Ze—C Jik ;efi,k

k

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:
Jii=C —Cefi,j Ji.j

e e e’
p' T .. —C — —C f — .
L,J Zef],k Ze efz,k Zefz,k
k k k

If we choose “C” to be the max, then it works:

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:
Jii=C e—Cefi,j Ji.j

e e’
p' T .. —C — —C f — .
L,J Zef],k Ze efz,k Zefz,k
k k k

If we choose “C” to be the max, then it works:

- It a large value appears in “t, then that value will
become 1 and all others will be 0 (avoiding overtlow)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:
Jii=C e—Cefi,j Ji.j

e e’
p' T .. —C — —C f — .
L,J Zef],k Ze efz,k Zefz,k
k k k

If we choose “C” to be the max, then it works:

- It a large value appears in “t, then that value will
become 1 and all others will be 0 (avoiding overtlow)

- It all values Iin “f" are large negative, then they will
be shifted up towards O (avoiding underflow)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:
Jii=C e—Cefi,j Ji.j

e e’
p' T .. —C — —C f — .
k k k

If we choose “C” to be the max, then it works:

- It a large value appears in “t, then that value will
become 1 and all others will be 0 (avoiding overtlow)

- It all values Iin “f" are large negative, then they will
be shifted up towards O (avoiding underflow)

def softmax(f):
exp_f = np.exp(f - np.max(f, axis=1l, keepdims=True))
return exp_f / np.sum(exp_f, axis=1l, keepdims=True)

What about the weights”

To get the derivative of the weights, use the chain rule again!

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

X —| Layer |— h h=h(x;W)

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

X —| Layer |— h h=h(x;W)

BL 2 JdL dh,
doh, W,

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W.b <

X — Layer

aL oL oh,
>

— h h=h(x;W)

doh, W,

oL ZBL oh,
ab oh, db,

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W.b
X —| Layer |— h h=h(x;W)
BL 2 JdL dh, dJdL 2 JdL oh,
oh, BW ab oh, ob.

(the number of subscripts and summations changes
depending on your layer and parameter sizes)

What about the weights”

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W.b
X —| Layer |— h h=h(x;W)
BL 2 JdL dh, dJdL 2 JdL oh,
oh, BW ab oh, ob.

(the number of subscripts and summations changes
depending on your layer and parameter sizes)

HW2: you will derive this for various layers.

(1)
AN

Function

Recap

Forward Propagation:

—>h(1)—>... —>

(n)
AN

Function

(1)
AN

X — | Function

Recap

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function

(1)
AN

X — | Function

Recap

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function

(1)
AN

X — | Function

Recap

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function

(1)
AN

X — | Function

Recap

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

(n)
AN

Function | — f—» L
oL
00" ™\
Function <—a—L — [
df

(1)
AN

X — | Function

Recap

Forward Propagation:

(n)
AN

Backward Propagation:

—’h(l)—’"‘ — | Function
oL
(n)
. 00" ™\
«— -+« «— | Function
oh'”

(1)
AN

Function

Recap

Forward Propagation:

—>h(1)—>... —>

Backward Propagation:

o0x

oL

060 ™\

4

Function

oL

" on™

(n)
AN

Function

oL

06" ™\,

e E—

Function

Questions?

e
®
D

O
&
D
)

O

30s cat p

http://stylonica.com/cat-pictures/

CNNSs

It's Just neural networks
with 3D activations

What shape should the
activations have”

X — Layer — h(l)—> Layer — h(z)—> cee —p f

\

- The Input Is an image, which is 3D
(RGB channel, height, width)

What shape should the
activations have”

X — Layer — h(l)—> Layer — h(z)—> cee —> f

\

- The Input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

What shape should the

activations have?

X — Layer

\

- The Input Is an image, which is 3D

>}hﬂ)+

Layer

(RGB channel, height, width)

— kﬁQ)_* e

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D7

- f

3D Activations

before:

output layer
Input
layer hidden layer (1 D VECtOI‘S)

Figure: Andrej Karpathy

3D Activations

before:

output layer
Input
layer hidden layer (1 D VeCtorS)

NOW: X h1 h2

y

(3D arrays)

Figure: Andrej Karpathy

3D Activations

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

HEIGHT

y

WIDTH

DEPTH

B>

3D Activations

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy

3D Activations

1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations: 3D Activations:

a hidden neuron in
next layer

32

w\\\,%\

Figure: Andrej Karpathy

3D Activations

32

32

e\

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The input Is 3x32x32

- This neuron depends

on a 3xbx5 chunk of
the input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)

3D Activations

32

a hidden neuron in
next layer

hi’

32

w\‘" Vo RN

Figure: Andrej Karpathy

Example: consider the
region of the input “x"”

With output neuron A’

3D Activations

Example: consider the
32 region of the input “x"”

a hidden neuron in
next layer

With output neuron A’

h Then the output Is:

32

w\‘" Vo RN

h' = Exrzjkvvzjk +b

ijk

Figure: Andrej Karpathy

3D Activations

32

32

w\‘“ o] k\

Figure: Andrej Karpathy

a hidden neuron in
next layer

hl"

Example: consider the
region of the input “x"”

With output neuron A’

Then the output Is:

h' = Exrzjkvvzjk +b

ijk

\

Sum over 3 axes

3D Activations

32

a hidden neuron in
next layer

h'

32

S\

Figure: Andrej Karpathy

3D Activations

32

a hidden neuron in
next layer

O
h, h,

32

S\

Figure: Andrej Karpathy

3D Activations

/ 32 With 2 output neurons
xr a hidden neuron in
next layer roo__ r
= hy = Zx ijkWIijk +b,
i O ijk
| L
5 hrl hrz
roo_ r
h 2 Zx ijkWZijk T bz
3 ijk
3

Figure: Andrej Karpathy

3D Activations

25 With 2 output neurons

a hidden neuron in

tl roo__ r
~3o M2l

ijk
r r
h, h, . r
2 Z’X i]’k‘/‘@ijk T
32 ik

S\

Figure: Andrej Karpathy

3D Activations

/ depth dlmensmn
T==00000
o

Figure: Andrej Karpathy

3D Activations

We can keep adding

more outputs
52 depth dimension
These form a column
=
/
3

>QQQQQ in the output volume:
Figure: Andrej Karpathy

[depth x 1 x 1]

3D Activations

We can keep adding

more outputs
52 depth dimension

These form a column

>Q OO0 in the output volume:
,\ [depth x 1 x 1]

= 1/
30 Each neuron has its
3 own 3D filter and

own (scalar) bias

Figure: Andrej Karpathy

3D Activations

. / Now repeat this
across the input

~=05000¢]

LV

>

D sets of weights
(also called filters)

~ &77\

Figure: Andrej Karpathy

32

3D Activations

[

=\

32

—~50000

4

D sets of weights

(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

Weight sharing:

Each filter shares
the same weights
(but each depth
iINndex has its own
set of weights)

3D Activations

./

~=05000¢]

LV

D sets of weights
(also called filters)

~ &77\

Figure: Andrej Karpathy

3D Activations

With weight
/ sharing,
%2 this Is called

y, convolution
=0000]

LV

>

D sets of weights
(also called filters)

\\/7\

Figure: Andrej Karpathy

32

3D Activations

[

=\

32

—~50000

4

D sets of weights

(also called filters)

Figure: Andrej Karpathy

With weight
sharing,

this is called
convolution

Without weight
sharing,

this is called a
locally
connected layer

3D Activations

Output of one filter One set of vveights gives

/ /// one slice in the output

To get a 3D output of depth D,

% use D different filters

/ In practice, CNNs use many
/ filters (~64 to 1024)

(input (output
depth) depth)

3D Activations

Output of one filter One set of vveights gives

/ /// one slice in the output

To get a 3D output of depth D,

% use D different filters

/ In practice, CNNs use many
/ filters (~64 to 1024)

(input (output

depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)

3D Activations

@>@ Let’s code this up in NumPy

32 /
3

out[n, @, r, c] =

3D Activations

@>@ Let’s code this up in NumPy

32 /
3

out[n, @, r, c] =
A

nth example

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32 /
3

out[n, @, r, c] =

A A

first filter

nth example

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32 /
3

out[n, @, r, c] =

Ry

output position

first filter

nth example

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(

Ry

output position

first filter

nth example

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry

output position

first filter

nth example

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry A

output position

first filter

nth example nth example

3D Activations

32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry ;i

output position

first filter all input channels

nth example nth example

3D Activations

32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

]V 1\

output position input region

first filter all input channels

nth example nth example

3D Activations

32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]

]V 1\

output position input region

first filter all input channels

nth example nth example

3D Activations

32
a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]
A

]V 1\

output position input region

first filter all input channels

nth example nth example first filter

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]
A

SRy R

output position input region

first filter all input channels all channels

nth example nth example first filter

32

3

out[n, @, r, c] = np.sum(X[n,

Ry

32

M0

3D Activations

a hidden neuron in
next layer

output position

first filter

nth example

Let’s code this up in NumPy

By

Input region

all input channels

nth example

., r@:rl, cO:cl] * WO, :, :, :]1) + b|0O]
A

|\

all positions
all channels
first filter

3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]| * WO, :, :, :]) + b[0O]
A

]V NS N

output position Input region all positions

first filter all input channels all channels

nth example nth example first filter

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

PECINEERDNEIIA NN S EO RN EERAERG

-)
i
..B .L‘ h |
. - . N
-
N ~

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
JRCINEERENNIIITAYEENESESARTINENRESR G

one filter = one depth slice (or activation map) (32 fi |’[erS, each 3)(5)(5)

Activations:

BB N2

EUAAEEES
ot
= NE w1

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

»
.

Activations:

FLU O H-AEFIEY P TASCERT BETE L& P
one ﬂlterwepth slice (or activation map) (32 fi|’[erS, each 3X5X5)

BN TENR

<

i

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)

»
A

o dilulnnnu::uan-llnnmaununlullud/il

one ﬂlterwepth slice (or activation map) (
Acﬁvans:

32 filters, each 3x5x5)

<

igure: Andrej Karpathy

Questions?

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Weights
/

-

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = ZXFU.,{W. +b

ijk
ijk

(channel, row, column)

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Input size of the input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O]1]0[O0([O0 (O

Output

Ol oo O | Oo0O|Oo0o|l OO0)| 0O | O

|l O |0 | 0O | O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O fFOTO PO O0|0]O0

Output

Gl NGO NG NGl ROl O NGR RoR o
Ol oo O | Oo0O|Oo0o|l OO0)| 0O | O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0 O PO OO O

Output

Gl NGO NG NGl ROl O NGR RoR o
Ol oo O | Oo0O|Oo0o|l OO0)| 0O | O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O]J]0[O0([O0(|O0

Output

Gl NGO NG NGl ROl O NGR RoR o

Ol oo O] 0| O | O

Input

Convolution:
How big is the output?

0

0

0

0

Ol oo O | OO0l OO0)| 0O | O

Ol NGO NG ROl ol Ol NOR ROoR o

Convolution:
How big is the output?

0 O[O0 0[O0O]1010]O0
0 , 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
0 O[O0 0[O0]10(10]O0

Convolution:
How big is the output?

stride s

< >

OO0 [O[O[O]O0]O

< >

kernell k

Ol oo O | OO0l OO0)| 0O | O
Ol NGO NG ROl ol Ol NOR ROoR o

Convolution:
How big is the output?

stride s

« -
O]0]1]0(O0O]010]0]10(|O0
o | , 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
O]0]1]0(O0O]1010]0]10(|O0

» -

width w,_

Convolution:
How big is the output?

stride s

« -
O]0]1]0(O0O]010]0]10(|O0
o | , 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
O]0]1]0(O0O]1010]0]10(|O0

— < - >

p width w,_ p

Convolution:
How big is the output?

stride §
< >
ojfolo|lo]Jo|o|O|O|O
0 . , 0
0 kernel| & 0
0 O | In general, the output has size:
’ ’ w. +2p—k
— | 1
0 0 Wout o |
e S —
0 0
0 0
ofolo|lo]o|oOo|O|O]|O
+—> < > —>

p width w,_ p

stride s

<

Convolution:
How big is the output?

010 O[0]0 0
0 0
0 kernel k 0
0 0
0 0
0 0
0 0
0 0
010 O[0]0 0

width w,_

Example: k=3, s=1, p="1

Convolution:
How big is the output?

stride s

0010107010701 01 Example: k=3, s=1, p=1

0 § . 0

0 kernel 0 B w,+2p—k
Wout o

0 0 i) _

0 o w.+2-3

0 0 B B

0 0 — Win

O1O0O]O0O[O0O]1O0]]O0O[O0O]101]20

p width w,_ p

Convolution:
How big is the output?

stride s
0/0]0]/0]0]0/0]0|0| Example: k=3, s=1, p=1
0 . R O
0 crne 0 wom _ in P |
0 0 - \) _
0 0 w, +2—3
. ; — 1
R S
0 0]
5 0 T Win
olololo|lo|lo|lOo|O]|oO |
VGGNet [Simonyan 2014]

p width w,_ p uses filters of this shape

Max Pooling

For most CNNs, convolution is often followed by pooling:

downsampling
32

32

Figure: Andrej Karpathy

Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

downsampling
32 = 16
\
16

32

Figure: Andrej Karpathy

Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common

downsampling
32

32

Figure: Andrej Karpathy

Max Pooling

For most CNNs, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common

- Why might "avg” be a poor choice”

downsampling
32 > 16
\
16

32

Figure: Andrej Karpathy

Max Pooling

Single depth slice

1112]| 4
5| 6|7 |8
3(12|1]0
112]3| 4

max pool with 2x2 filters
and stride 2

>

Figure: Andrej Karpathy

Max Pooling

Single depth slice

11112] 4
5| 6|7 |8
31210
112]3| 4

y

max pool with 2x2 filters
and stride 2

>

What's the backprop rule for max pooling”?

Figure: Andrej Karpathy

Max Pooling

Single depth slice

11112 | 4
max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
3121|110 3| 4
11213 | 4
y

What's the backprop rule for max pooling”?
- In the forward pass, store the index that took the max

Figure: Andrej Karpathy

Max Pooling

Single depth slice

1124
max pool with 2x2 filters
516 | 7| 8 and stride 2 6 | 8
31210 3 | 4
112 | 3| 4
y

What's the backprop rule for max pooling”?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy

Example CNN

Q
-
L,
Q
=

L

Ship

BEREFIRDSIEND
P ELT E RS T
L EDA B 1
" VLEFEERIVI T
EEEEEREEES
ol R e R
— (AR R ENER
HEEEEEERER
— [HE RN REE R
aa F I I P ITFEL
s FFI'EFIITE

POOL

RelLU
Y

CONV

RelLU

CONV

Figure: Andrej Karpathy

Example CNN

o —»
=
L&
Z
w —>
-
V%IV
cIRRREIDWEND
e [ET T EETT
e [ETTELTT
G = | 0 5
R [[[T TTDITT
2 —~ | 50 0 I 0
el [[[[T [[°]
gl [[[[T 11T
6 — | i o s
D ..
e F [[T T T FT

— RIS TS IR

CONV

Figure: Andrej Karpathy

Example CNN

(Fully-connected)

CONV POOL Ec
RelLU l

l?j}U ‘l

'

BERECIBEIEND
— IS NE
nd| | 00 L[]
— | N 1 O
caad | [| | 1] [OF

CONV POOL CONV
RelLU

U

2 1T T TTETTIIE
c — (HE NN
e [[[[T T[T
& — | s

RelLU

adl F [| 1 [[7] F [
gk P TFFAYITE

3

CONV

Figure: Andrej Karpathy

Example CNN

CONV CONV POOLCONV CONV POOL CONV CONV POOL Ec

l RelLU l ReLUl l RelLU l ReLUl RelLU RelLU (Fully-connected)
MR
TR
(o [
& —
DRSS E =
EEER OO ol
A]
IHIH W= |S]EE] -
IR ™
-)=
oL S R -

10x3x3 conv filters, stride 1, pad 1
2X2 pOOl filters, stride 2 Figure: Andrej Karpathy

Questions?

