
Convolutional
Neural
Networks
CS 4670
Sean Bell

http://brownsharpie.courtneygibbons.org/?p=90

Review: Setup

x h(1)

L

Function Function h(2) ...

y

θ (1)

f

θ (2)

Review: Setup

x h(1)

L

Function Function h(2) ...

y

θ (1)

f

θ (2)

- Goal: Find a value for parameters (, , …), so that
the loss (L) is small

θ (1) θ (2)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

∂L
∂W (1)

12

1

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

∂L
∂W (1)

12

1

(Gradient)
L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

∂L
∂W (1)

12

1

(Gradient)
L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

Take a step

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

f

θ (2)

L

W (1)
12

∂L
∂W (1)

12

1

A weight somewhere in the network

LossHow do we get the gradient? Backpropagation

(Gradient)
Toy

Example:

W (1), b(1)

W (1)x + b(1)

Backprop
It’s just the chain rule

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n Layer n +1 ...

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n

This is what we
want for each layer

Layer n +1 ...

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

Layer n +1 ...

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

What we want

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

What we want

given to us

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

∂L
∂h(n−1)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂h(n−1)

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

∂L
∂h(n−1)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂h(n−1)

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

∂L
∂h(n−1)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂h(n−1)

Backprop

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

Backprop

For each layer, we compute:

Propagated gradient from right[]⋅ Local gradient[]
Propagated gradient to the left[]=

Backprop

For each layer, we compute:

Propagated gradient from right[]⋅ Local gradient[]
Propagated gradient to the left[]=

(Can compute immediately)

Backprop

For each layer, we compute:

Propagated gradient from right[]⋅ Local gradient[]
Propagated gradient to the left[]=

(Can compute immediately)(Received during backprop)

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

Backprop

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

Backward Propagation:

Backprop

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L

Backward Propagation:

Backprop

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

Backward Propagation:

Backprop

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

Backward Propagation:

Function

∂L
∂θ (n)

Backprop

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

Backprop

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

Function

∂L
∂θ (1)

∂L
∂x

Backprop

Backprop
It’s easy to write down the chain rule for higher dimensions —

just add more subscripts and more summations

Backprop

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

It’s easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

Backprop

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑ x,h 1D arrays (vectors)

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

It’s easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

Backprop

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑ x,h 1D arrays (vectors)

∂L
∂xab

= ∂L
∂hij

∂hij
∂xabj

∑
i
∑ x,h 2D arrays

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

It’s easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

Backprop

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑ x,h 1D arrays (vectors)

∂L
∂xab

= ∂L
∂hij

∂hij
∂xabj

∑
i
∑ x,h 2D arrays

∂L
∂xabc

= ∂L
∂hijk

∂hijk
∂xabck

∑
j
∑

i
∑ x,h 3D arrays

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

It’s easy to write down the chain rule for higher dimensions —
just add more subscripts and more summations

Example: Mean Subtraction
(for a single input)

• Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

Example: Mean Subtraction
(for a single input)

• Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

• Example layer: mean subtraction:  

hi = xi −
1
D

xk
k
∑

Example: Mean Subtraction
(for a single input)

• Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

• Example layer: mean subtraction:  

hi = xi −
1
D

xk
k
∑ (here, “i” and “k”

are channels)

Example: Mean Subtraction
(for a single input)

• Ok, so how do we actually derive the backwards
pass? Let’s walk through an example together.

• Example layer: mean subtraction:  

• For backprop, we just need the local derivative

hi = xi −
1
D

xk
k
∑ (here, “i” and “k”

are channels)

Example: Mean Subtraction
(for a single input)

(backprop
aka chain rule)

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

Done!

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

• Usually the forwards pass and backwards pass are
similar but not the same.

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

• Usually the forwards pass and backwards pass are
similar but not the same.

• Derive it by hand, and check it numerically

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:
Dimension mismatch

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:
Dimension mismatch

You need to broadcast properly:

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:
Dimension mismatch

You need to broadcast properly:

This also works:

• Forward:

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

The backward pass is easy:

(Remember they’re usually not the same)

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels)

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

pi, j =
e fi , j

e fi ,k
k
∑

(Softmax)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

pi, j =
e fi , j

e fi ,k
k
∑

(Softmax)

Li = − log pi,yi

(Cross-entropy)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

Example: Softmax (for N inputs)
Let’s assume we are using Softmax and Cross-entropy loss

(together this is often called “Softmax loss”)

pi, j =
e fi , j

e fi ,k
k
∑

(Softmax)

Li = − log pi,yi

(Cross-entropy)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

L = 1
N

Li
i
∑

(Avg. over examples)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

Example: Softmax (for N inputs)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

∂L
∂ fi, j

=
pi, j − ti, j
N

Derivative:

Example: Softmax (for N inputs)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

∂L
∂ fi, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

Example: Softmax (for N inputs)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

∂L
∂ fi, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

Example: Softmax (for N inputs)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

∂L
∂ fi, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

(Try deriving this — it’s tricky but not too hard)

Example: Softmax (for N inputs)

xi ... fi piSoftmax Li

yi
Cross-
Entropy

∂L
∂ fi, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

(Try deriving this — it’s tricky but not too hard)

Now we can continue backpropagating to the layer before “f”

Example: Softmax (for N inputs)

Let’s code this up in NumPy: pi, j =
e fi , j

e fi ,k
k
∑

Example: Softmax (for N inputs)

Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?

pi, j =
e fi , j

e fi ,k
k
∑

Example: Softmax (for N inputs)

Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?
- What if there is the value 1000 appears in “f”?

pi, j =
e fi , j

e fi ,k
k
∑

Example: Softmax (for N inputs)

Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?
- What if there is the value 1000 appears in “f”?

pi, j =
e fi , j

e fi ,k
k
∑

Overflow —> we get inf/inf = NaN

Example: Softmax (for N inputs)

Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?
- What if there is the value 1000 appears in “f”?

pi, j =
e fi , j

e fi ,k
k
∑

- What if the largest value is -1000?
Overflow —> we get inf/inf = NaN

Example: Softmax (for N inputs)

Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?
- What if there is the value 1000 appears in “f”?

pi, j =
e fi , j

e fi ,k
k
∑

- What if the largest value is -1000?
Overflow —> we get inf/inf = NaN

Underflow —> we get 0/0 = NaN

Example: Softmax (for N inputs)

Let’s code this up in NumPy:

Doesn’t work — what’s the problem this time?
- What if there is the value 1000 appears in “f”?

pi, j =
e fi , j

e fi ,k
k
∑

- What if the largest value is -1000?
Overflow —> we get inf/inf = NaN

Underflow —> we get 0/0 = NaN

This expression is numerically unstable

Example: Softmax (for N inputs)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

pi, j =
e fi , j−C

e f j ,k−C
k
∑

= e−Ce fi , j

e−Ce fi ,k
k
∑ = e fi , j

e fi ,k
k
∑

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

pi, j =
e fi , j−C

e f j ,k−C
k
∑

= e−Ce fi , j

e−Ce fi ,k
k
∑ = e fi , j

e fi ,k
k
∑

If we choose “C” to be the max, then it works:

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

pi, j =
e fi , j−C

e f j ,k−C
k
∑

= e−Ce fi , j

e−Ce fi ,k
k
∑ = e fi , j

e fi ,k
k
∑

If we choose “C” to be the max, then it works:
- If a large value appears in “f”, then that value will
become 1 and all others will be 0 (avoiding overflow)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

pi, j =
e fi , j−C

e f j ,k−C
k
∑

= e−Ce fi , j

e−Ce fi ,k
k
∑ = e fi , j

e fi ,k
k
∑

If we choose “C” to be the max, then it works:
- If a large value appears in “f”, then that value will
become 1 and all others will be 0 (avoiding overflow)
- If all values in “f” are large negative, then they will
be shifted up towards 0 (avoiding underflow)

Example: Softmax (for N inputs)

Observation: subtracting a constant does not change “p”:

pi, j =
e fi , j−C

e f j ,k−C
k
∑

= e−Ce fi , j

e−Ce fi ,k
k
∑ = e fi , j

e fi ,k
k
∑

If we choose “C” to be the max, then it works:
- If a large value appears in “f”, then that value will
become 1 and all others will be 0 (avoiding overflow)
- If all values in “f” are large negative, then they will
be shifted up towards 0 (avoiding underflow)

Example: Softmax (for N inputs)

What about the weights?
To get the derivative of the weights, use the chain rule again!

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑ ∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑
(the number of subscripts and summations changes

depending on your layer and parameter sizes)

∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

HW2: you will derive this for various layers.

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑
(the number of subscripts and summations changes

depending on your layer and parameter sizes)

∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

Recap

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

Backward Propagation:

Recap

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L

Backward Propagation:

Recap

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

Backward Propagation:

Recap

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

Backward Propagation:

Function

∂L
∂θ (n)

Recap

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

Recap

x h(1) LFunction Function f...
θ (1) θ (n)

Forward Propagation:

L∂L
∂ f

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

Function

∂L
∂θ (1)

∂L
∂x

Recap

Questions?

30s cat picture break

http://stylonica.com/cat-pictures/

http://stylonica.com/cat-pictures/

CNNs
It’s just neural networks

with 3D activations

What shape should the
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

What shape should the
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

What shape should the
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D?

3D Activations

(1D vectors)

(3D arrays)

x h1 h2

Figure: Andrej Karpathy

3D Activations

(1D vectors)

(3D arrays)

x h1 h2

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

3D Activations
1D Activations:

Figure: Andrej Karpathy

3D Activations
1D Activations: 3D Activations:

Figure: Andrej Karpathy

3D Activations

5

5

- The input is 3x32x32  

- This neuron depends
on a 3x5x5 chunk of
the input 

- The neuron also has a
3x5x5 set of weights
and a bias (scalar)

Figure: Andrej Karpathy

3D Activations

5

5

Example: consider the
region of the input “ ”

xr

hr

xr

With output neuron hr

Figure: Andrej Karpathy

3D Activations

5

5

Example: consider the
region of the input “ ”

xr

hr

xr

With output neuron hr

hr = xrijkWijk
ijk
∑ + b

Then the output is:

Figure: Andrej Karpathy

3D Activations

5

5

Example: consider the
region of the input “ ”

xr

hr

xr

With output neuron hr

hr = xrijkWijk
ijk
∑ + b

Then the output is:

Sum over 3 axes
Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1

Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1 h
r
2

Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1 h
r
2

hr1 = xrijkW1ijk
ijk
∑ + b1

With 2 output neurons

hr2 = xrijkW2ijk
ijk
∑ + b2

Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1 h
r
2

hr1 = xrijkW1ijk
ijk
∑ + b1

With 2 output neurons

hr2 = xrijkW2ijk
ijk
∑ + b2

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations
We can keep adding
more outputs

These form a column
in the output volume:
[depth x 1 x 1]

Figure: Andrej Karpathy

3D Activations

Each neuron has its
own 3D filter and
own (scalar) bias

We can keep adding
more outputs

These form a column
in the output volume:
[depth x 1 x 1]

Figure: Andrej Karpathy

3D Activations
Now repeat this
across the input

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations
Now repeat this
across the input

Each filter shares
the same weights
(but each depth
index has its own

set of weights)

Weight sharing:

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

D sets of weights
(also called filters)

3D Activations
With weight
sharing,
this is called
convolution

Figure: Andrej Karpathy

D sets of weights
(also called filters)

3D Activations
With weight
sharing,
this is called
convolution

Without weight
sharing,
this is called a
locally
connected layer

Figure: Andrej Karpathy

D sets of weights
(also called filters)

3D Activations
One set of weights gives
one slice in the output

To get a 3D output of depth D,
use D different filters

In practice, CNNs use many
filters (~64 to 1024)

(input
depth)

(output
depth)

Output of one filter

3D Activations
One set of weights gives
one slice in the output

To get a 3D output of depth D,
use D different filters

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)

In practice, CNNs use many
filters (~64 to 1024)

(input
depth)

(output
depth)

Output of one filter

3D Activations

Let’s code this up in NumPy

nth example

3D Activations

Let’s code this up in NumPy

nth example

first filter

3D Activations

Let’s code this up in NumPy

nth example

first filter
output position

3D Activations

Let’s code this up in NumPy

nth example

first filter
output position

3D Activations

Let’s code this up in NumPy

nth example

first filter
output position

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels
all positions

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels
all positions

bias

3D Activations

Let’s code this up in NumPyxr

We can unravel the 3D cube and show each layer separately:

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

(Input)

3D Activations

We can unravel the 3D cube and show each layer separately:

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

(Input)

3D Activations

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

We can unravel the 3D cube and show each layer separately:
(Input)

3D Activations

3D Activations

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

We can unravel the 3D cube and show each layer separately:
(Input)

Questions?

Convolution: Stride

Input

Weights

During convolution, the weights “slide” along the input to
generate each output

Output

Convolution: Stride

Input

During convolution, the weights “slide” along the input to
generate each output

Output

Convolution: Stride

Input

During convolution, the weights “slide” along the input to
generate each output

Output

Convolution: Stride

Input

During convolution, the weights “slide” along the input to
generate each output

Output

Convolution: Stride

Input

During convolution, the weights “slide” along the input to
generate each output

Output

Convolution: Stride

Input

During convolution, the weights “slide” along the input to
generate each output

Output

Convolution: Stride

Input

During convolution, the weights “slide” along the input to
generate each output

Recall that at each position,
we are doing a 3D sum:

hr = xrijkWijk
ijk
∑ + b

(channel, row, column)

Convolution: Stride

Input

Output

But we can also convolve with a stride, e.g. stride = 2

Convolution: Stride

Input

Output

But we can also convolve with a stride, e.g. stride = 2

Convolution: Stride

Input

Output

But we can also convolve with a stride, e.g. stride = 2

Convolution: Stride

Input

- Notice that with certain
strides, we may not be able to
cover all of the input

Output

But we can also convolve with a stride, e.g. stride = 2

Convolution: Stride

Input

- Notice that with certain
strides, we may not be able to
cover all of the input

Output

- The output is also half the
size of the input

But we can also convolve with a stride, e.g. stride = 2

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution: Padding
We can also pad the input with zeros.
Here, pad = 1, stride = 2

Output

Input

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution: Padding
We can also pad the input with zeros.
Here, pad = 1, stride = 2

Output

Input

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution: Padding

Input

We can also pad the input with zeros.
Here, pad = 1, stride = 2

Output

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution: Padding
We can also pad the input with zeros.
Here, pad = 1, stride = 2

Output

Input

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

kernel k

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

stride s

kernel k

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

width win

stride s

kernel k

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

width win

stride s

kernel k

pp

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

width win

stride s

kernel k

pp

wout =
win + 2p − k

s
⎢
⎣⎢

⎥
⎦⎥
+1

In general, the output has size:

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Example: k=3, s=1, p=1

width win p

stride s

kernel k

p

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Example: k=3, s=1, p=1

wout =
win + 2p − k

s
⎢
⎣⎢

⎥
⎦⎥
+1

= win + 2 − 3
1

⎢
⎣⎢

⎥
⎦⎥
+1

= win

width win p

stride s

kernel k

p

Convolution:
How big is the output?

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Example: k=3, s=1, p=1

wout =
win + 2p − k

s
⎢
⎣⎢

⎥
⎦⎥
+1

= win + 2 − 3
1

⎢
⎣⎢

⎥
⎦⎥
+1

= win

width win p

stride s

kernel k

VGGNet [Simonyan 2014]
uses filters of this shapep

Max Pooling

Figure: Andrej Karpathy

For most CNNs, convolution is often followed by pooling:

Max Pooling

Figure: Andrej Karpathy

For most CNNs, convolution is often followed by pooling:
- Creates a smaller representation while retaining the
most important information

Max Pooling

Figure: Andrej Karpathy

For most CNNs, convolution is often followed by pooling:
- Creates a smaller representation while retaining the
most important information
- The “max” operation is the most common

Max Pooling

Figure: Andrej Karpathy

For most CNNs, convolution is often followed by pooling:
- Creates a smaller representation while retaining the
most important information
- The “max” operation is the most common
- Why might “avg” be a poor choice?

Max Pooling

Figure: Andrej Karpathy

Max Pooling

Figure: Andrej Karpathy

What’s the backprop rule for max pooling?

Max Pooling

Figure: Andrej Karpathy

What’s the backprop rule for max pooling?
- In the forward pass, store the index that took the max

Max Pooling

Figure: Andrej Karpathy

What’s the backprop rule for max pooling?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Example CNN

Figure: Andrej Karpathy

Example CNN

Figure: Andrej Karpathy

Example CNN

Figure: Andrej Karpathy

Example CNN

Figure: Andrej Karpathy

10x3x3 conv filters, stride 1, pad 1
2x2 pool filters, stride 2

Questions?

