CS4670/5670: Computer Vision Kavita Bala

Lecture 24: Multi-view stereo

Announcements

- HW 2 out today
 - Due end of month. Problems as we cover topics.

PA 4 out later this week

Road map

- What we've seen so far:
 - Low-level image processing: filtering, edge detecting, feature detection
 - Geometry: image transformations, panoramas, single-view modeling Fundamental matrices
- What's next:
 - Finishing up geometry
 - Today: multi view stereo, graph cuts for stereo
 - Wed: structure from motion
 - Then: Recognition
 - If we have time: computational photography

Readings

• Szeliski, Chapter 7.1 - 7.4

Multi-view stereo

Stereo

Multi-view stereo

Multi-view Stereo

Point Grey's Bumblebee XB3

Point Grey's ProFusion 25

CMU's 3D Room

Multi-view Stereo

Multi-view Stereo

Input: calibrated images from several viewpoints

Output: 3D object model

(Next time: sFM feeds MVS)

Figures by Carlos Hernandez

Hernandez, Schmitt 2004

Pons, Keriven, Faugeras 2005

Furukawa, Ponce 2006

Goesele et al. 2007

1998

Stereo: another view

Choosing the stereo baseline

Large Baseline

Small Baseline

What's the optimal baseline?

- Too large: difficult search problem
- Too small: large depth error

Depth from disparity

$$(B + X'-X)/(Z-f) = B/Z$$

$$(X - X') / f = B/X$$

$$X - X' = (B*f) / z$$

$$z = (B*f) / (X - X')$$

The Effect of Baseline on Depth Estimation

Figure 2: An example scene. The grid pattern in the background has ambiguity of matching.

pixel matching score

Fig. 5. SSD values versus inverse distance: (a) B=b; (b) B=2b; (c) B=3b; (d) B=4b; (e) B=5b; (f) B=6b; (g) B=7b; (h) B=8b. The horizontal axis is normalized such that 8bF=1.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Multibaseline Stereo

Basic Approach

- Choose a reference view
- Use your favorite stereo algorithm BUT
 - replace two-view SSD with SSSD over all baselines

Limitations

Won't work for widely distributed views

Fig. 5. SSD values versus inverse distance: (a) B=b; (b) B=2b; (c) B=3b; (d) B=4b; (e) B=5b; (f) B=6b; (g) B=7b; (h) B=8b. The horizontal axis is normalized such that 8bF=1.

Problem: visibility

Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions

- Match only nearby photos [Narayanan 98]
- Use NCC instead of SSD,
 Ignore NCC values < threshold
 [Hernandez & Schmitt 03]

Popular matching scores

SSD (Sum Squared Distance)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

NCC (Normalized Cross Correlation)

$$\frac{\sum_{x,y} (W_1(x,y) - \overline{W_1})(W_2(x,y) - \overline{W_2})}{\sigma_{W_1} \sigma_{W_2}}$$

- where
$$\overline{W_i} = \frac{1}{n} \sum_{x,y} W_i$$
 $\sigma_{W_i} = \sqrt{\frac{1}{n} \sum_{x,y} (W_i - \overline{W_i})^2}$

Benefits

Multi-view stereo from Internet Collections

Challenges

Appearance variation

Resolution

Massive collections

82,754 results for photos matching notre and dame and paris.

4 best neighboring views

reference view

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007]

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

Results

Notre Dame de Paris

653 images 313 photographers

merged model of Pisa Cathedral

Accuracy compared to laser scanned model: 90% of points within 0.25% of ground truth

PMVS

Patch-based Multi-view Stereo

Patch-based Multi-view Stereo Software (PMVS - Version 2)

Software developped and distributed by

<u>Yasutaka Furukawa</u> - University of Illinois at Urbana-Champaign, University of Washington <u>Jean Ponce</u> - University of Illinois at Urbana-Champaign, Ecole Normale Supérieure

Next time: sFM feeds PMVS

Aside: Stereo as energy minimization

- What defines a good stereo correspondence?
 - 1. Match quality
 - Want each pixel to find a good match in the other image

Results with window search

Data

Window-based matching

Ground truth

Aside: Stereo as energy minimization

- What defines a good stereo correspondence?
 - 1. Match quality
 - Want each pixel to find a good match in the other image
 - 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

- Find disparity map \emph{d} that minimizes an energy function $E(\emph{d})$
- Simple pixel / window matching

$$E(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

$$C(x,y,d(x,y)) = \frac{\text{SSD distance between windows}}{I(x,y) \text{ and } J(x+d(x,y),y)}$$

J(x, y)

C(x, y, d); the disparity space image (DSI)

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$d(x,y) = \underset{d'}{\operatorname{arg\,min}} C(x,y,d')$$

Better objective function

$$E(d) = E_d(d) + \lambda E_s(d)$$
match cost smoothness cost

Want each pixel to find a good match in the other image

Adjacent pixels should (usually) move about the same amount

$$E(d) = E_d(d) + \lambda E_s(d)$$

match cost:

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

smoothness cost:
$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$

 \mathcal{E} : set of neighboring pixels

4-connected neighborhood

8-connected neighborhood

Smoothness cost

$$E_s(d) = \sum_{(p,q)\in\mathcal{E}} V(d_p, d_q)$$

$$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$
"Potts model"

Dynamic programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

• Can minimize this independently per scanline using dynamic programming (DP)

Dynamic programming

• Finds "smooth" path through DSI from left to right

Dynamic Programming

Coherent stereo on 2D grid

Scanline stereo generates streaking artifacts

 Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

Stereo matching as energy minimization

$$E(d) = E_d(d) + \lambda E_s(d)$$
data term smoothness term

 Energy functions of this form can be minimized using graph cuts

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization via Graph Cuts</u>, PAMI 2001

Before

Graph cuts

Ground truth

Y. Boykov, O. Veksler, and R. Zabih,

Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/