CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein

Lecture 23: Photometric Stereo

Announcements

- PA3 Artifact due tonight
- PA3 Demos Thursday
- Signups close at 4:30 today
- No lecture on Friday

Last Time: Two-View Stereo

Last Time: Two-View Stereo

Key Idea: use feature motion to understand shape

Today: Photometric Stereo

0

Key Idea: use pixel brightness to understand shape

Today: Photometric Stereo

0

Key Idea: use pixel brightness to understand shape

Photometric Stereo

What results can you get?

Input
(1 of 12)

Normals (RGB colormap)

Shaded 3D rendering

Textured 3D rendering

Modeling Image Formation

Now we need to reason about:

- How light interacts with the scene
- How a pixel value is related to light energy in the world

Let's track a "ray" of light all the way from light source to the sensor.

Directional Lighting

- Key property: all rays are parallel
- Equivalent to an infinitely distant point source

Lambertian Reflectance

$$
I=N \cdot L
$$

Image intensity
$\propto \quad \cos ($ angle between N and L$)$

Lambertian Reflectance

1. Reflected energy is proportional to cosine of angle between L and N (incoming)
2. Measured intensity is viewpoint-independent (outgoing)

Lambertian Reflectance: Incoming

1. Reflected energy is proportional to cosine of angle between L and N

Lambertian Reflectance: Incoming

1. Reflected energy is proportional to cosine of angle between L and N

Lambertian Reflectance: Incoming

1. Reflected energy is proportional to cosine of angle between L and N

Light hitting surface is proportional to the cosine

Lambertian Reflectance: Outgoing

2. Measured intensity is viewpoint-independent

Lambertian Reflectance: Outgoing

2. Measured intensity is viewpoint-independent

Lambertian Reflectance: Outgoing

2. Measured intensity is viewpoint-independent

Lambertian Reflectance: Outgoing

2. Measured intensity is viewpoint-independent

Measured intensity $\propto B_{0} \cos (\theta) \frac{1}{\cos (\theta)}$

$$
A \propto \frac{1}{\cos (\theta)}
$$

Image Formation Model: Final

$$
I=k_{d} \mathbf{N} \cdot \mathbf{L}
$$

1. Diffuse albedo: what fraction of incoming light is reflected?

- Introduce scale factor k_{d}

2. Light intensity: how much light is arriving?

- Compensate with camera exposure (global scale factor)

3. Camera response function

- Assume pixel value is linearly proportional to incoming energy (perform radiometric calibration if not)

A Single Image: Shape from Shading

$$
I=k_{d} \mathbf{N} \cdot \mathbf{L}
$$

Assume k_{d} is 1 for now. What can we measure from one image?

- $\cos ^{-1}(I)$ is the angle between N and L
- Add assumptions:
- A few known normals (e.g. silhouettes)
- Smoothness of normals

In practice, SFS doesn't work very well: assumptions are too restrictive, too much ambiguity in nontrivial scenes.

Multiple Images: Photometric Stereo

$$
\begin{aligned}
I_{1} & =k_{d} \mathbf{N} \cdot \mathbf{L}_{1} \\
I_{2} & =k_{d} \mathbf{N} \cdot \mathbf{L}_{2} \\
I_{3} & =k_{d} \mathbf{N} \cdot \mathbf{L}_{3}
\end{aligned}
$$

Write this as a matrix equation:

$$
\left[\begin{array}{lll}
I_{1} & I_{2} & I_{3}
\end{array}\right]=k_{d} \mathbf{N}^{T}\left[\begin{array}{lll}
\mathbf{L}_{1} & \mathbf{L}_{2} & \mathbf{L}_{3}
\end{array}\right]
$$

Solving the Equations

$$
\begin{aligned}
k_{d} & =\|\mathbf{G}\| \\
\mathbf{N} & =\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

Solving the Equations

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
I_{1} & I_{2} & I_{3}
\end{array}\right]}_{\mathbf{I}}=\underbrace{k_{d} \mathbf{N}^{T}}_{\underset{\mathbf{G}}{\mathbf{G}^{\prime}}}[\underbrace{\left[\begin{array}{lll}
\mathbf{L}_{1} & \mathbf{L}_{2} & \mathbf{L}_{3}
\end{array}\right]}_{\mathcal{L}} \\
& \mathrm{G}=\mathrm{IL}^{-1}
\end{aligned}
$$

- When is L nonsingular (invertible)?
- >= 3 light directions are linearly independent, or:
- All light direction vectors cannot lie in a plane.
- What if we have more than one pixel?
- Stack them all into one big system.

More than Three Lights

$$
\left[\begin{array}{lll}
I_{1} & \ldots & I_{n}
\end{array}\right]=k_{d} \mathbf{N}^{T}\left[\begin{array}{lll}
\mathbf{L}_{1} & \ldots & \mathbf{L}_{\mathbf{n}}
\end{array}\right]
$$

- Solve using least squares (normal equations):

$$
\begin{aligned}
\mathbf{I} & =\mathrm{GL} \\
\mathrm{IL}^{\mathrm{T}} & =\mathrm{GLL}^{\mathrm{T}} \\
\mathrm{G} & =\left(\mathrm{IL}^{\mathrm{T}}\right)\left(\mathrm{LL}^{\mathrm{T}}\right)^{-1}
\end{aligned}
$$

- Or equivalently, use the SVD.
- Given G , solve for N and k_{d} as before.

More than one pixel

Previously:

More than one pixel

Stack all pixels into one system:

Solve as before.

Color Images

- Now we have 3 equations for a pixel:

$$
\begin{aligned}
& \mathbf{I}_{R}=k_{d R} \mathbf{L N} \\
& \mathbf{I}_{G}=k_{d G} \mathbf{L N} \\
& \mathbf{I}_{B}=k_{d B} \mathbf{L N}
\end{aligned}
$$

- Simple approach: solve for N using grayscale or a single channel.
- Then fix N and solve for each channel's k_{d} :

$$
k_{d}=\frac{\sum_{i} I_{i} L_{i} N^{T}}{\sum_{i}\left(L_{i} N^{T}\right)^{2}}
$$

Depth Map from Normal Map

- We now have a surface normal, but how do we get depth?

Assume a smooth surface

$$
\begin{aligned}
V_{1} & =\left(x+1, y, z_{x+1, y}\right)-\left(x, y, z_{x y}\right) \\
& =\left(1,0, z_{x+1, y}-z_{x y}\right) \\
0 & =N \cdot V_{1} \\
& =\left(n_{x}, n_{y}, n_{z}\right) \cdot\left(1,0, z_{x+1, y}-z_{x y}\right) \\
& =n_{x}+n_{z}\left(z_{x+1, y}-z_{x y}\right)
\end{aligned}
$$

Get a similar equation for V_{2}

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Determining Light Directions

- Trick: Place a mirror ball in the scene.

- The location of the highlight is determined by the light source direction.

Determining Light Directions

- For a perfect mirror, the light is reflected across N :

$$
I_{e}=\left\{\begin{array}{cl}
I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

- So the light source direction is given by:

$$
L=2(N \cdot R) N-R
$$

Determining Light Directions

- For a sphere with highlight at point H :

Compute N:

$$
\begin{aligned}
& N_{x}=\frac{x_{h}-x_{c}}{r} \\
& N_{y}=\frac{y_{h}-y_{c}}{r} \\
& N_{z}=\sqrt{1-x^{2}-y^{2}}
\end{aligned}
$$

image plane

- $\mathrm{R}=$ direction of the camera from $\mathrm{C}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$ $L=2(N \cdot R) N-R$

Results

from Athos Georghiades

Results

Input
(1 of 12)

Normals (RGB colormap)

Shaded 3D rendering

Textured 3D rendering

For (unfair) Comparison

- Multi-view stereo results on a similar object
- 47+ hrs compute time

State-of-theart MVS result

Ground truth

Taking Stock: Assumptions

Lighting	Materials	Geometry	Camera
directional	diffuse	convex / no shadows	linear
known direction	no inter- reflections		orthographic
>2 nonplanar			
directions	no subsurface scattering		

Questions?

Unknown Lighting

- What we've seen so far: [Woodham 1980]
- Next up: Unknown light directions [Hayakawa 1994]

Unknown Lighting

Unknown Lighting

Surface normals, Light directions, scaled by albedo scaled by intensity

Unknown Lighting

Same as before, just transposed:

Unknown Lighting

Both L and N are now unknown! This is a matrix factorization problem.

Unknown Lighting

$$
M_{i j}=L_{i} \cdot N_{j}
$$

There's hope: We know that M is rank 3

Unknown Lighting

Use the SVD to decompose M:

SVD gives the best rank-3 approximation of a matrix.

Unknown Lighting

Use the SVD to decompose M:

What do we do with Σ ?

Unknown Lighting

Use the SVD to decompose M:

What do we do with Σ ?

Unknown Lighting

Use the SVD to decompose M:

Can we just do that?

Unknown Lighting

Use the SVD to decompose M:

Can we just do that? ...almost.
The decomposition is non-unique up to an invertible $3 \times 3 \mathrm{~A}$.

Unknown Lighting

Use the SVD to decompose M:

Unknown Lighting

Use the SVD to decompose M:

You can find A if you know

- 6 points with the same reflectance, or
- 6 lights with the same intensity.

Unknown Lighting: Ambiguities

- Multiple combinations of lighting and geometry can produce the same sets of images.
- Add assumptions or prior knowledge about geometry or lighting, etc. to limit the ambiguity.

[Belhumeur et al.'97]

Questions?

Since 1994...

- Workarounds for many of the restrictive assumptions.
- Webcam photometric stereo:

Ackermann et al. 2012

Since 1994...

- Photometric stereo from unstructured photo collections (different cameras and viewpoints):

Shi et al, 2014

Since 1994...

- Non-Lambertian (shiny) materials:

Hertzmann and Seitz, 2005

$$
\infty
$$

Lights, camera, action

