CS4670: Computer Vision Kavita Bala

Lecture 6: Feature Detection

Quiz

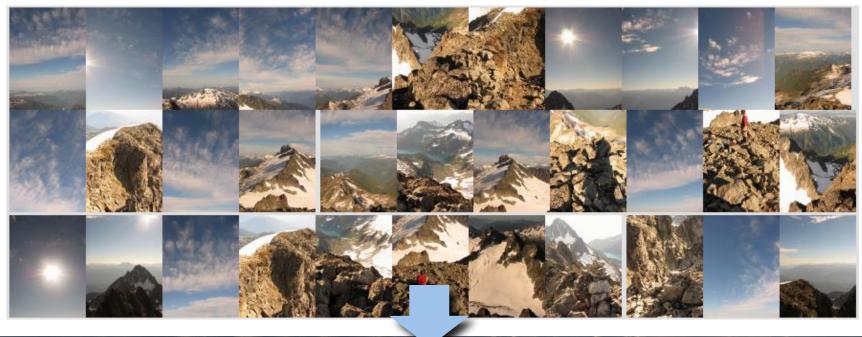
Write your name and netid

... now

Name (please print): NETID (i.e., email address @cornell.edu):

This test is closed-book / closed-note. You have 10 minutes.

Motivation: Automatic panoramas



Microsoft puts some pizzazz into panoramic photos

The company's ICE software now can stitch video frames into panoramic images and fill in inevitable gaps. It shows the field of computational photography is still in its early days.

by Stephen Shankland & @stshank / February 5, 2015 9:30 AM PST

1 / f 88 / 7 139 /

Microsoft ICE stitches still photos or video frames into a single panoramic image. Version 2.0 can fill in gaps so you don't have to crop as much.

http://gigapixelartzoom.com

Approach

Feature detection: find it

Feature descriptor: represent it

Feature matching: match it

Feature tracking: track it, when motion

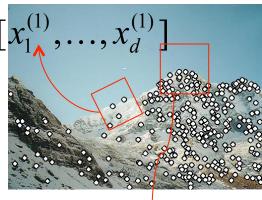
Local features: main components

1) Detection: Identify the interest points

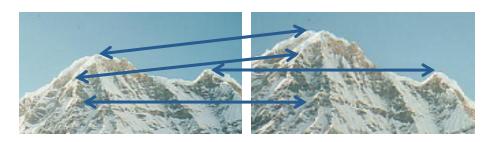
2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views





$$\mathbf{x}_{2}^{\vee} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$



Characteristics of good features

Repeatability

 The same feature can be found in several images despite geometric and photometric transformations

Saliency

- Each feature is distinctive

Compactness and efficiency

Many fewer features than image pixels

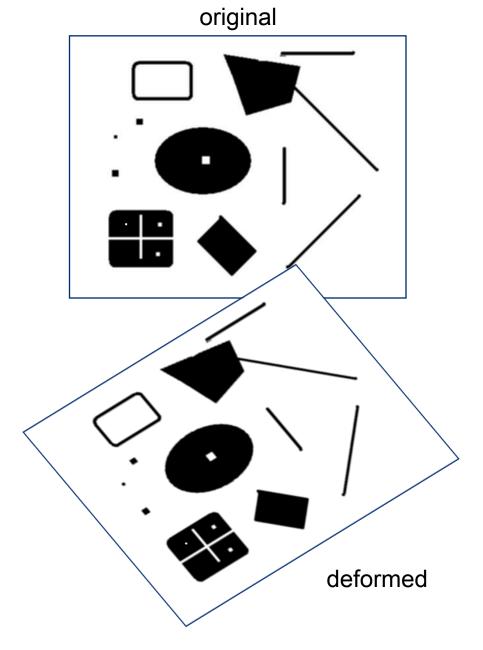
Locality

 A feature occupies a relatively small area of the image; robust to clutter and occlusion

What is a good feature?

 Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.

– Which points would you choose?



Want uniqueness

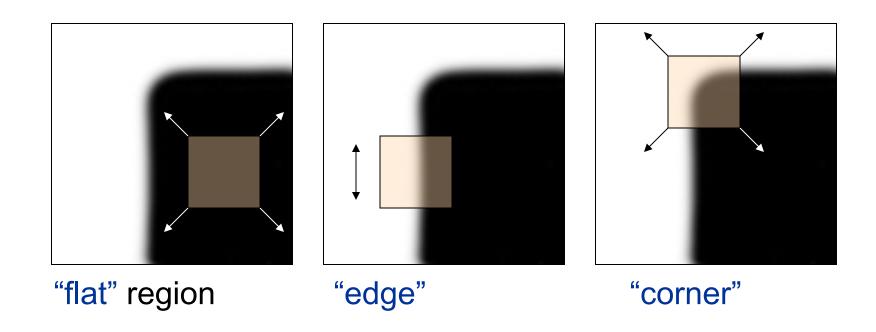
Look for image regions that are unusual

Lead to unambiguous matches in other images

How to define "unusual"?

Corner Detection: Basic Idea

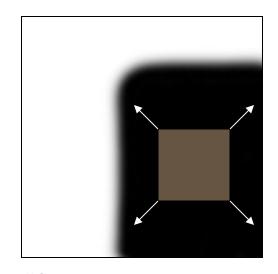
 We should easily recognize the point by looking through a small window



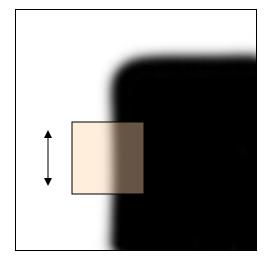
Source: A. Efros

Corner Detection: Basic Idea

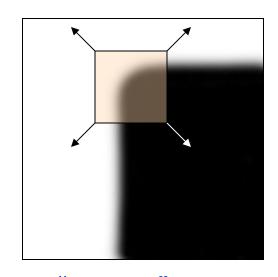
- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner":
significant
change in all
directions

Source: A. Efros

Many Existing Detectors Available

Hessian & Harris

Laplacian, DoG

Harris-/Hessian-Laplace

Harris-/Hessian-Affine

EBR and IBR

MSER

Salient Regions

Others...

[Beaudet '78], [Harris '88]

[Lindeberg '98], [Lowe 1999]

[Mikolajczyk & Schmid '01]

[Mikolajczyk & Schmid '04]

[Tuytelaars & Van Gool '04]

[Matas '02]

[Kadir & Brady '01]

Finding Corners

Corners are repeatable and distinctive

 Key property: in the region around a corner, image gradient has two or more dominant directions

Feature extraction: Corners

Harris corner detection: the math

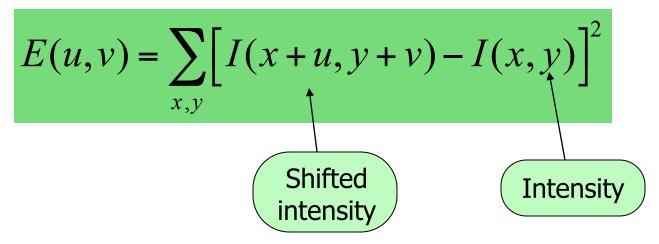
Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after:
 compute sum of squared differences (SSD)
- this defines an SSD "error" E(u,v):



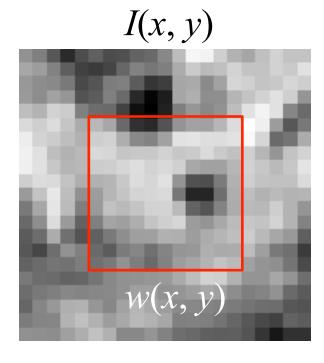
$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

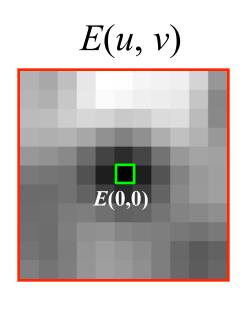
Change in appearance of window w(x,y) for the shift [u,v]:



Change in appearance of window w(x,y) for the shift [u,v]:

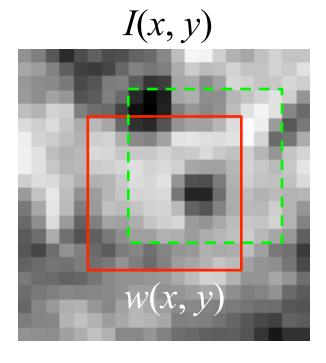
$$E(u,v) = \sum_{x,y} [I(x+u,y+v) - I(x,y)]^{2}$$

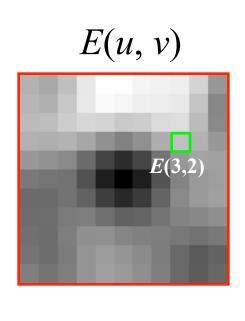




Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} [I(x+u,y+v) - I(x,y)]^{2}$$





Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{x,y} [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

Small motion assumption

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

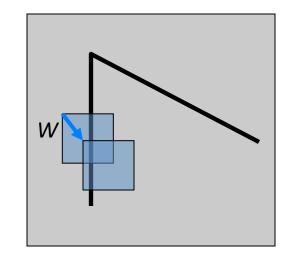
shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Feature detection: the math

Consider shifting the window W by (u,v)

define an SSD "error" E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$

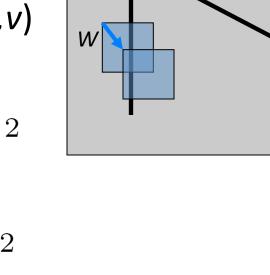
$$\approx \sum_{(x,y)\in W} [I(x,y) + [I_{x} I_{y}] \begin{bmatrix} u \\ v \end{bmatrix} - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in W} [[I_{x} I_{y}] \begin{bmatrix} u \\ v \end{bmatrix}]^{2}$$

Corner detection: the math

Consider shifting the window W by (u,v)

define an SSD "error" E(u,v):



$$E(u,v) \approx \sum_{(x,y)\in W} [I_x u + I_y v]^2$$

$$\approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y)\in W} I_x^2 \qquad B = \sum_{(x,y)\in W} I_x I_y \qquad C = \sum_{(x,y)\in W} I_y^2$$

• Thus, E(u,v) is locally approximated as a quadratic error function

The quadratic approximation simplifies to

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives (aka structure tensor):

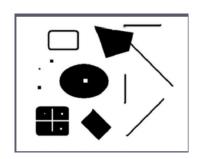
$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x}^{I_x I_x} & \sum_{I_x I_y}^{I_x I_y} \\ \sum_{I_x I_y}^{I_x I_y} & \sum_{I_y I_y}^{I_y I_y} \end{bmatrix} = \sum_{I_x I_y}^{I_x I_y} [I_x I_y] = \sum_{I_x I_y}^{I_x I_y} \nabla_{I_x I_y}^{I_x I_y}$$

Corners as distinctive interest points

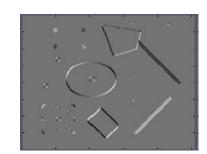
$$M = \sum \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point)



$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$

$$I_y \Leftrightarrow \frac{\partial I}{\partial y}$$



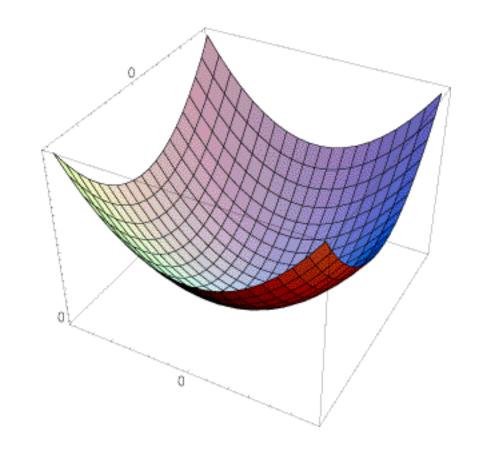
$$I_y \Leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} \begin{vmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{vmatrix}$$

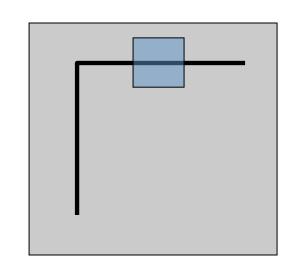


$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{vmatrix} A & B \\ B & C \end{vmatrix} \begin{vmatrix} u \\ v \end{vmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

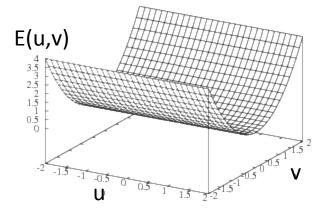
$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$



Horizontal edge: $I_x=0$

$$\mathbf{M} = \left[\begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right]$$

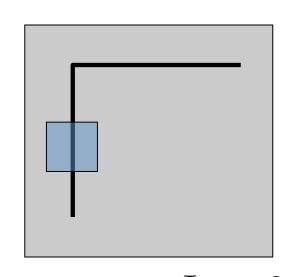


$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{vmatrix} A & B \\ B & C \end{vmatrix} \begin{vmatrix} u \\ v \end{vmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

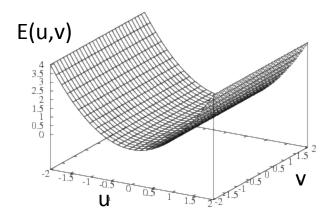
$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$



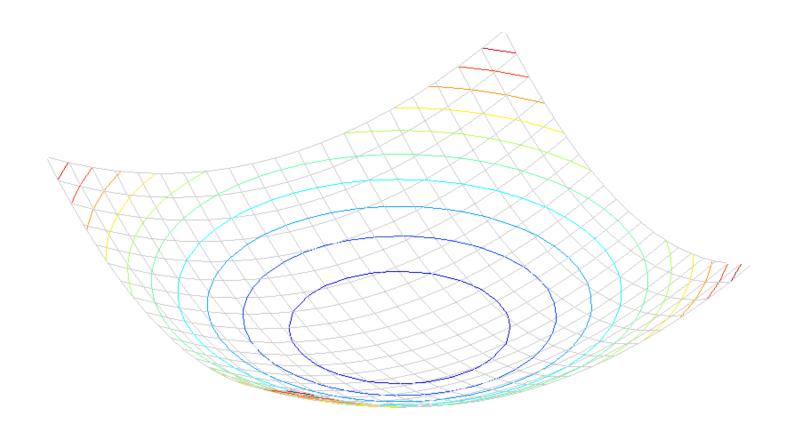
Vertical edge: $I_y=0$

$$M = \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$



Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$ This is the equation of an ellipse.



Questions?