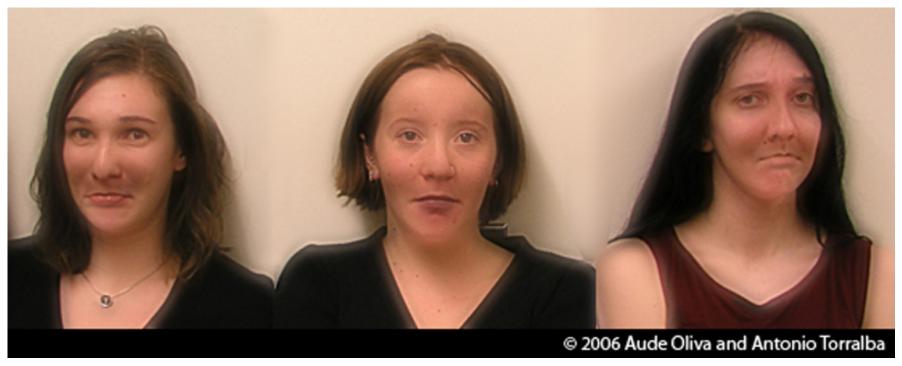
CS4670/5670: Intro to Computer Vision Kavita Bala

Lecture 1: Images and image filtering



Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS4670: Computer Vision Kavita Bala

Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS4670: Computer Vision Kavita Bala

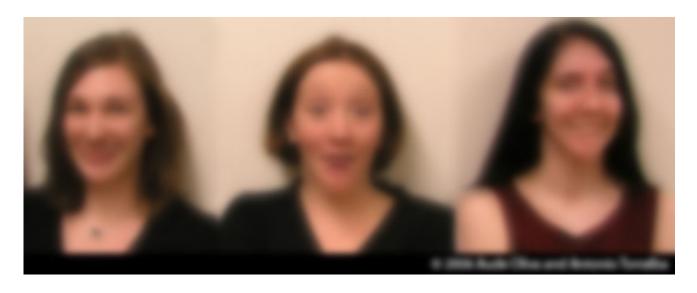
Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS4670: Computer Vision

Kavita Bala

Lecture 1: Images and image filtering

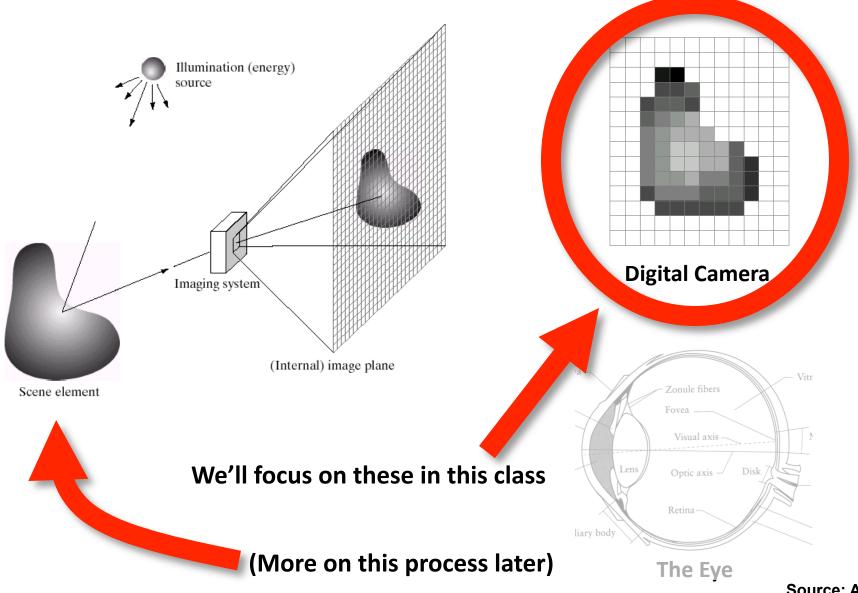


Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Reading and Announcements

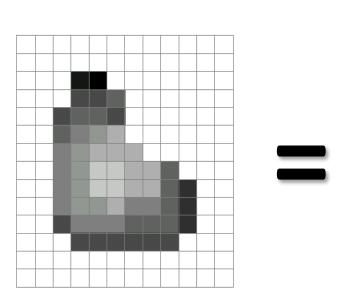
• Szeliski, Chapter 3.1-3.2

 For CMS, wait and then contact Randy Hess (rbhess@cs.cornell.edu)



Source: A. Efros

A grid (matrix) of intensity values



255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

Images as functions

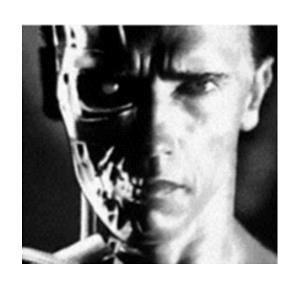
An image contains discrete numbers of pixels

- Pixel value
 - grayscale/intensity
 - [0,255]
 - Color
 - RGB [R, G, B], where [0,255] per channel
 - Lab [L, a, b]: Lightness, a and b are color-opponent dimensions
 - HSV [H, S, V]: Hue, saturation, value

Images as functions

- Can think of image as a **function**, f, from \mathbb{R}^2 to \mathbb{R} or \mathbb{R}^M :
 - Grayscale: f(x,y) gives **intensity** at position (x,y)
 - f: [a,b] x [c,d] → [0,255]
 - Color: f(x,y) = [r(x,y), g(x,y), b(x,y)]

A digital image is a discrete (sampled, quantized) version of this function



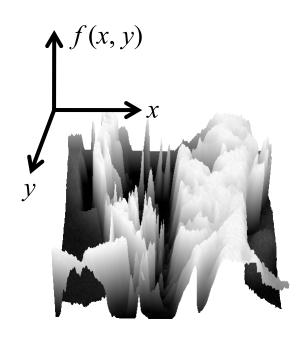


Image transformations

 As with any function, we can apply operators to an image

$$g(x,y) = f(x,y) + 20$$

$$g(x,y) = f(-x,y)$$

Image transformations

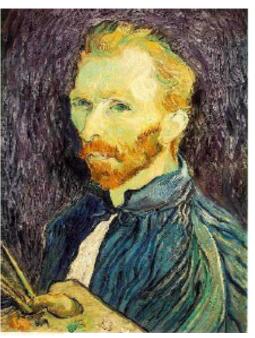
 As with any function, we can apply operators to an image

$$g(x,y) = f(x,y) + 20$$

$$g(x,y) = f(-x,y)$$

Filters

- Filtering
 - Form a new image whose pixels are a combination of the original pixels
- Why?
 - To get useful information from images
 - E.g., extract edges or contours (to understand shape)
 - To enhance the image
 - E.g., to blur to remove noise
 - E.g., to sharpen to "enhance image" a la CSI



Super-resolution

Noise reduction

Noise reduction

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

How to formulate as filtering?

Image filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

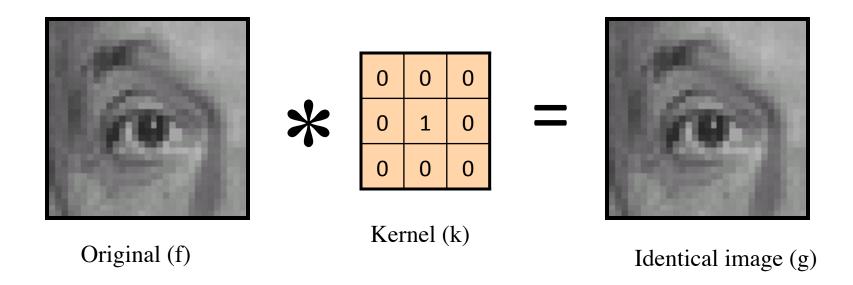
10	5	3		
4	5	1		
1	1	7		

7

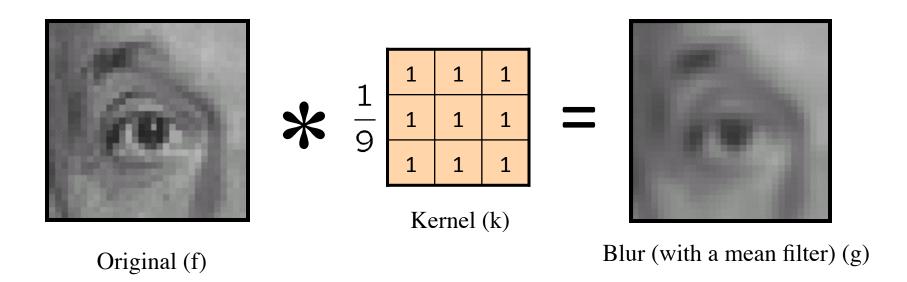
Modified image data

$$f[m,n] \to S \to g[m,n]$$

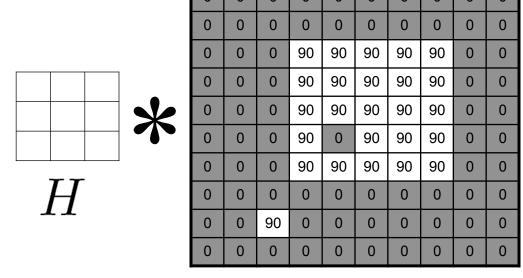
Filters: examples



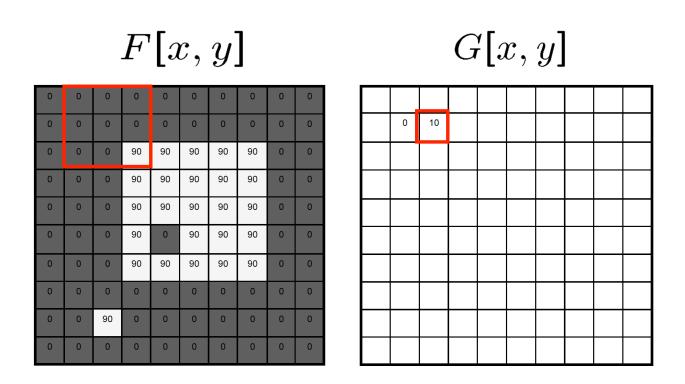
Filters: examples

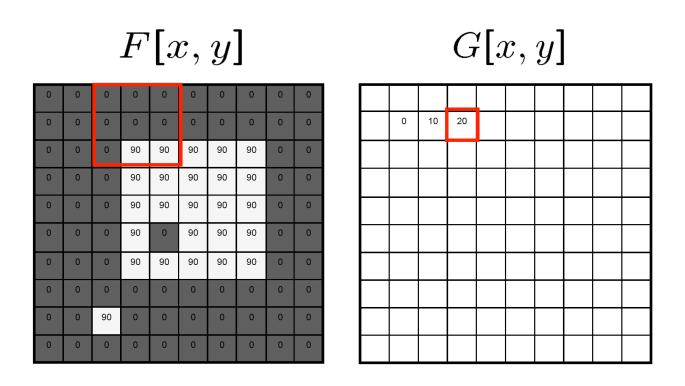


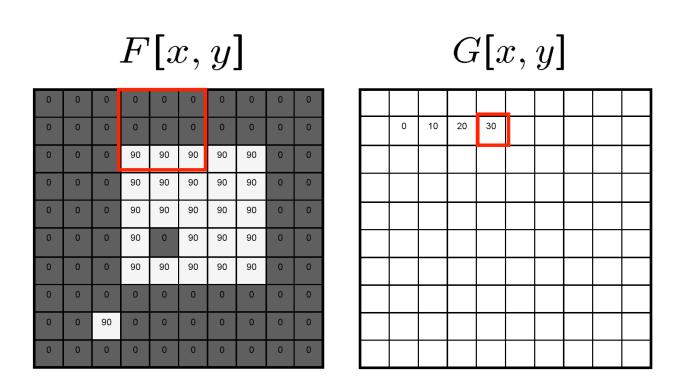
Mean filtering

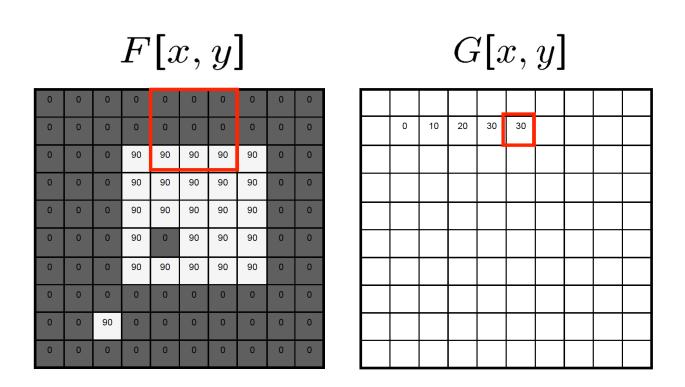


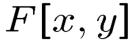
F

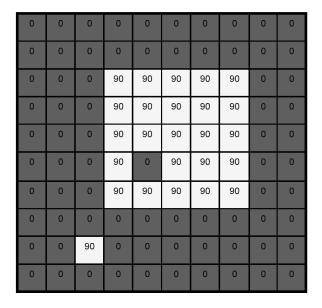








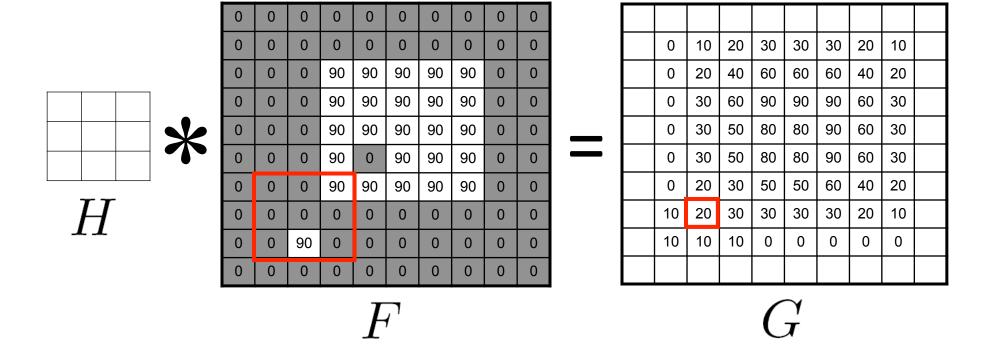




G[x,y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Mean filtering

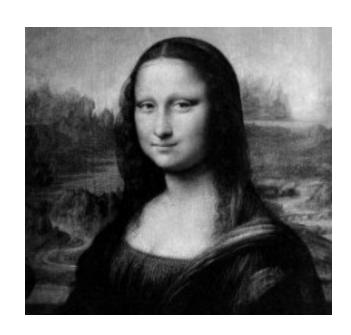


Replace each pixel with an average of its neighborhood

- Achieves smoothing effect
 - Removes sharp features

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

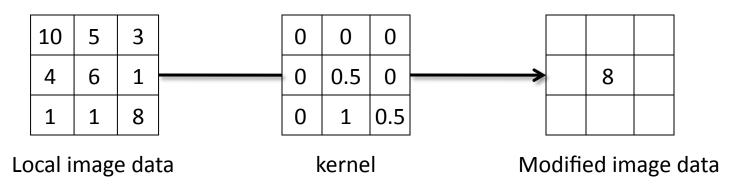
Filters: Thresholding



$$g(m,n) = \begin{cases} 255, & f(m,n) > A \\ 0 & otherwise \end{cases}$$

Linear filtering

- One simple version: linear filtering
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
 - Simple, but powerful
 - Cross-correlation, convolution
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")



Filter Properties

Linearity

- Weighted sum of original pixel values
- Use same set of weights at each point
- -S[f+g] = S[f] + S[g]
- -S[k f + m g] = k S[f] + m S[g]

Linear Systems

- Is mean filtering/moving average linear?
 - Yes

- Is thresholding linear?
 - No

Filter Properties

- Linearity
 - Weighted sum of original pixel values
 - Use same set of weights at each point
 - -S[f+g] = S[f] + S[g]
 - -S[p f + q g] = p S[f] + q S[g]
- Shift-invariance
 - If $f[m,n] \stackrel{s}{\rightarrow} g[m,n]$, then $f[m-p,n-q] \stackrel{s}{\rightarrow} g[m-p,n-q]$
 - The operator behaves the same everywhere

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

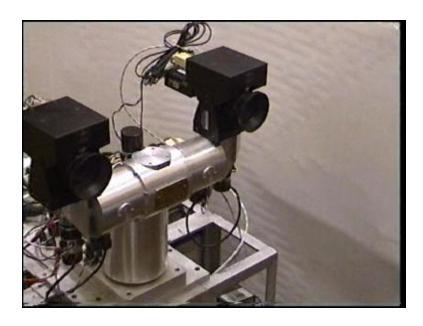
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

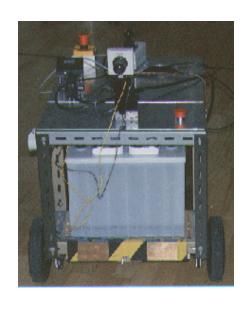
$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Stereo head

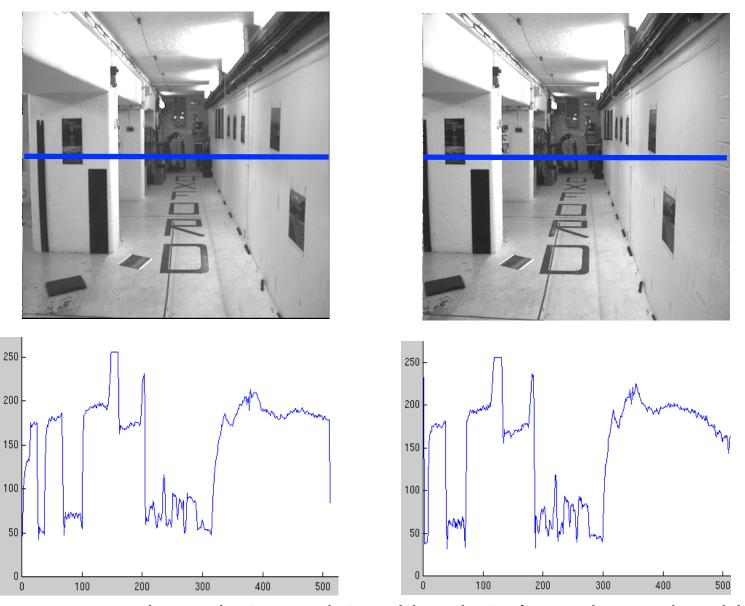


Camera on a mobile vehicle



Example image pair – parallel cameras

Intensity profiles



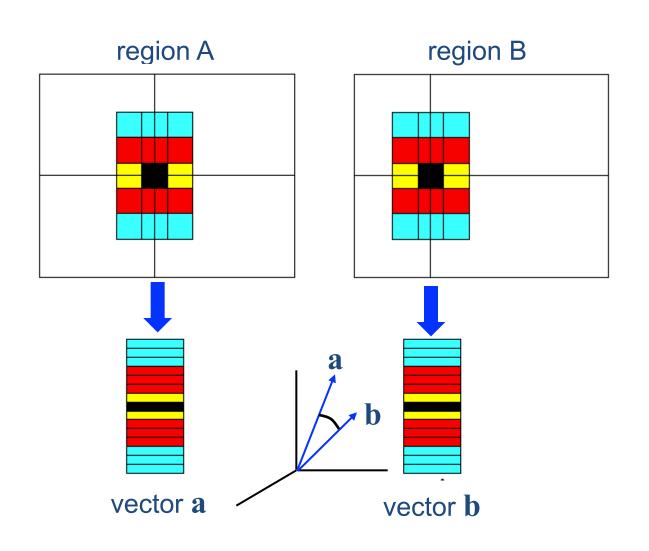
• Clear correspondence between intensities, but also noise and ambiguity

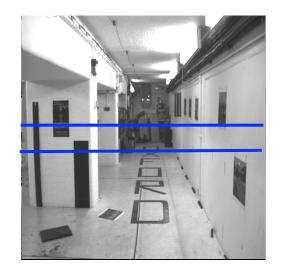
Normalized Cross Correlation

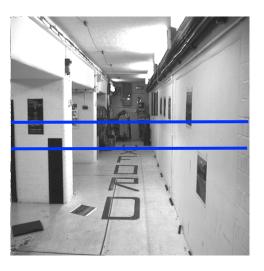
write regions as vectors

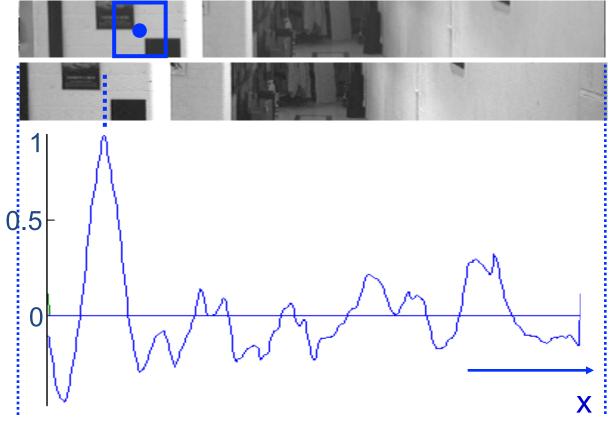
$$\mathtt{A} o \mathbf{a}, \ \mathtt{B} o \mathbf{b}$$

$$\mathsf{NCC} = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$$









left image band right image band

cross correlation

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Convolution

