
CS 4620 Lecture 2

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle meshes I
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• We use slip days 
• You have 7 slip days for 4620, 7 separate ones for 4621 

– e.g. you could turn in Ray 1 4 days late and Splines 3 days late. You are out 
of slip days for further 4620 assignments, but you could still turn in one 
4621 assignment 7 days late

• Accounting is separate per individual 
– so it’s possible for you to have slip days left but your partner not to

• Each late day beyond 7 incurs a 10 point late penalty 
– i.e. project earns 93/100, is 2 days late, receives 73/100

• Regardless of late penalties, assignments can’t be turned in 
more than 7 days late 

• No slip days for 4621 final project
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CS4620/21 late policy
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PATRIOT Engineering

finite element analysis
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Ottawa Convention Center
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A small triangle mesh
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12 triangles, 8 vertices
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A large mesh
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from a high-resolution 
3D scan 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about a trillion-triangle worldwide model
from semi-automatically processed
satellite, aerial, and street photography



• Defined by three vertices 
• Lives in the plane containing those vertices 
• Vector normal to plane is the triangle’s normal 
• Conventions (for this class, not everyone agrees): 

– vertices are counter-clockwise as seen from the “outside” or “front”
– surface normal points towards the outside (“outward facing normals”)
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Triangles
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• A bunch of triangles in 3D space that are connected together 
to form a surface 

• Geometrically, a mesh is a piecewise planar surface 
– almost everywhere, it is planar
– exceptions are at the edges where triangles join

• Often, it’s a piecewise planar approximation of a smooth 
surface 
– in this case the creases between triangles are artifacts—we don’t want to 

see them

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle meshes
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• Compactness 
• Efficiency for rendering 

– enumerate all triangles as triples of 3D points
• Efficiency of queries  

– all vertices of a triangle
– all triangles around a vertex
– neighboring triangles of a triangle
– (need depends on application)

• finding triangle strips
• computing subdivision surfaces
• mesh editing
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Representation of triangle meshes
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• Separate triangles 
• Indexed triangle set 

– shared vertices
• Triangle strips and triangle fans 

– compression schemes for fast transmission
• Triangle-neighbor data structure 

– supports adjacency queries
• Winged-edge data structure 

– supports general polygon meshes

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Representations for triangle meshes
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Interesting and
useful but not
used in Mesh
assignment

crucial for  
first assignment
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Separate triangles
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• array of triples of points 

– float[nT][3][3]: about 72 bytes per vertex

• 2 triangles per vertex (on average)
• 3 vertices per triangle
• 3 coordinates per vertex
• 4 bytes per coordinate (float)

• various problems 
– wastes space (each vertex stored 6 times)
– cracks due to roundoff
– difficulty of finding neighbors at all  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Separate triangles
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• Store each vertex once 
• Each triangle points to its three vertices
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Indexed triangle set
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Triangle { 
Vertex vertex[3]; 
} 

Vertex { 
float position[3];  // or other data 
} 

// ... or ... 

Mesh { 
float verts[nv][3];  // vertex positions (or other data) 
int tInd[nt][3];  // vertex indices 
}
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Indexed triangle set
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• nT = #tris; nV = #verts; nE = #edges 

• Rule of thumb: nT:nE:nV is about 2:3:1
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Estimating storage space
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• array of vertex positions 

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex
• array of triples of indices (per triangle) 

– int[nT][3]: about 24 bytes per vertex 

• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• total storage: 36 bytes per vertex (factor of 2 savings) 
• represents topology and geometry separately 
• finding neighbors is at least well defined
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Indexed triangle set
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• Often need to store additional information besides just the 
geometry 

• Can store additional data at faces, vertices, or edges 
• Examples 

– colors stored on faces, for faceted objects
– information about sharp creases stored at edges
– any quantity that varies continuously (without sudden changes, or 

discontinuities) gets stored at vertices 

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Data on meshes
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• Surface normals 
– when a mesh is approximating a curved surface, store normals at vertices

• Surface parameterizations 
– providing a 2D coordinate system on the surface

• Positions 
– at some level this is just another piece of data
– position varies continuously between vertices
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Key types of vertex data
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• Tangent plane 
– at a point on a smooth surface in 3D, there is a unique plane tangent to the 

surface, called the tangent plane

• Normal vector 
– vector perpendicular  

to a surface (that is,  
to the tangent plane)

– only unique for smooth  
surfaces (not at corners, 
edges)
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Differential geometry 101
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• A surface in 3D is a two-dimensional thing 
• Sometimes we need 2D coordinates for points on the surface 
• Defining these coordinates is parameterizing the surface 
• Examples: 

– cartesian coordinates on a rectangle (or other planar shape)
– cylindrical coordinates (θ, y) on a cylinder
– latitude and longitude on the Earth’s surface
– spherical coordinates (θ, ɸ) on a sphere

• Spoiler alert: 
– in graphics, parameterizations are most often used for texture mapping.
– therefore many systems call the parameters “texture coordinates.”

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Surface parameterization
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• position: 

• normal is position  
(easy!) 

• texture coordinates
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Example: unit sphere
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• Piecewise planar approximation converges pretty quickly to 
the smooth geometry as the number of triangles increases 
– for mathematicians: error is O(h2)

• But the surface normals don’t converge so well 
– normal is constant over each triangle, with discontinuous jumps across 

edges
– for mathematicians: error is only O(h)

• Better: store the “real” normal at each vertex, and interpolate 
to get normals that vary gradually across triangles
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How to think about vertex normals
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• Approximating circle with increasingly many segments 
• Max error in position error drops  

by factor of 4 at each step 
• Max error in normal  

only drops 
by factor of 2
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Interpolated normals—2D example
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• Triangles 
– specify (u,v) for each vertex
– define (u,v) for interior by linear interpolation
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(u,v)

(uc,vc)

(ub,vb)

(ua,va)

Parameterizing a single triangle
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• in many cases we care about the mesh being able to bound a 
region of space nicely 

• in other cases we want triangle meshes to fulfill assumptions 
of algorithms that will operate on them (and may fail on 
malformed input) 

• two completely separate issues: 
– mesh topology: how the triangles are connected  

(ignoring the positions entirely)
– geometry: where the triangles are in 3D space
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Validity of triangle meshes
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• same geometry, different mesh topology: 

• same mesh topology, different geometry:
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Topology/geometry examples
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• strongest property: be a manifold 
– this means that no points  

should be "special" 
– interior points are fine
– edge points: each edge  

must have exactly 2 triangles
– vertex points: each vertex  

must have one loop of triangles
• slightly looser: manifold with 

boundary 
– weaken rules  

to allow boundaries 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Topological validity
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• Consistent orientation 
– Which side is the “front” or “outside” of the surface and which is the “back” 

or “inside?”
– rule: you are on the outside when you see the vertices in counter-clockwise 

order
– in mesh, neighboring triangles should agree about which side is the front!
– caution: not always possible
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Topological validity
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• generally want non-self-intersecting surface 
• hard to guarantee in general 

– because far-apart parts of mesh might intersect 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Geometric validity
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• Take advantage of the  
mesh property 
– each triangle is usually  

adjacent to the previous
– let every vertex create a triangle by reusing the second and third vertices of 

the previous triangle
– every sequence of three vertices produces a triangle (but not in the same 

order)
– e. g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to 

(0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
– for long strips, this requires about one index per triangle
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Triangle strips
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Triangle strips

4, 0
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• array of vertex positions 

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex
• array of index lists 

– int[nS][variable]: 2 + n indices per strip

– on average, (1 + ε) indices per triangle (assuming long strips)
• 2 triangles per vertex (on average)
• about 4 bytes per triangle (on average)

• total is 20 bytes per vertex (limiting best case) 
– factor of 3.6 over separate triangles; 1.8 over indexed mesh
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Triangle strips
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• Same idea as triangle strips, but keep oldest rather than 
newest 
– every sequence of three vertices produces a triangle
– e. g., 0, 1, 2, 3, 4, 5, … leads to 

(0 1 2), (0 2 3), (0 3 4), (0 4 5), …
– for long fans, this requires  

about one index per triangle
• Memory considerations exactly the  

same as triangle strip
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Triangle fans
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