
CS 4620 Lecture 2

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle meshes I

1

• We use slip days
• You have 7 slip days for 4620, 7 separate ones for 4621

– e.g. you could turn in Ray 1 4 days late and Splines 3 days late. You are out
of slip days for further 4620 assignments, but you could still turn in one
4621 assignment 7 days late

• Accounting is separate per individual
– so it’s possible for you to have slip days left but your partner not to

• Each late day beyond 7 incurs a 10 point late penalty
– i.e. project earns 93/100, is 2 days late, receives 73/100

• Regardless of late penalties, assignments can’t be turned in
more than 7 days late

• No slip days for 4621 final project

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

CS4620/21 late policy

2

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 3

spheres approximate  
sphere

Andrzej Barabasz

Rineau  
& Yvinec  

CGAL manual

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 4

PATRIOT Engineering

finite element analysis

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 5

Ottawa Convention Center

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

A small triangle mesh

6

12 triangles, 8 vertices

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

A large mesh

7

Tr
ad

iti
on

al
 T

ha
i s

cu
lp

tu
re

—
sc

an
 b

y
X

Y
Z

R
G

B,
 in

c.
, i

m
ag

e
by

 M
es

hL
ab

 p
ro

je
ct

10 million triangles
from a high-resolution 
3D scan 

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 8

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 9

© 2018 Steve Marschner •
(with previous instructors James/Bala)

Cornell CS4620/5620 Spring 2018 10

about a trillion-triangle worldwide model
from semi-automatically processed
satellite, aerial, and street photography

• Defined by three vertices
• Lives in the plane containing those vertices
• Vector normal to plane is the triangle’s normal
• Conventions (for this class, not everyone agrees):

– vertices are counter-clockwise as seen from the “outside” or “front”
– surface normal points towards the outside (“outward facing normals”)

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangles

11

• A bunch of triangles in 3D space that are connected together
to form a surface

• Geometrically, a mesh is a piecewise planar surface
– almost everywhere, it is planar
– exceptions are at the edges where triangles join

• Often, it’s a piecewise planar approximation of a smooth
surface
– in this case the creases between triangles are artifacts—we don’t want to

see them

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle meshes

12

• Compactness
• Efficiency for rendering

– enumerate all triangles as triples of 3D points
• Efficiency of queries

– all vertices of a triangle
– all triangles around a vertex
– neighboring triangles of a triangle
– (need depends on application)

• finding triangle strips
• computing subdivision surfaces
• mesh editing

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Representation of triangle meshes

13

• Separate triangles
• Indexed triangle set

– shared vertices
• Triangle strips and triangle fans

– compression schemes for fast transmission
• Triangle-neighbor data structure

– supports adjacency queries
• Winged-edge data structure

– supports general polygon meshes

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Representations for triangle meshes

14

Interesting and
useful but not
used in Mesh
assignment

crucial for  
first assignment

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Separate triangles

15

• array of triples of points

– float[nT][3][3]: about 72 bytes per vertex

• 2 triangles per vertex (on average)
• 3 vertices per triangle
• 3 coordinates per vertex
• 4 bytes per coordinate (float)

• various problems
– wastes space (each vertex stored 6 times)
– cracks due to roundoff
– difficulty of finding neighbors at all  

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Separate triangles

16

• Store each vertex once
• Each triangle points to its three vertices

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Indexed triangle set

17

Triangle {
Vertex vertex[3];
}

Vertex {
float position[3]; // or other data
}

// ... or ...

Mesh {
float verts[nv][3]; // vertex positions (or other data)
int tInd[nt][3]; // vertex indices
}

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Indexed triangle set

18

• nT = #tris; nV = #verts; nE = #edges

• Rule of thumb: nT:nE:nV is about 2:3:1

[A
le

c
Ja

co
bs

on
]

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Estimating storage space

19

• array of vertex positions

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex
• array of triples of indices (per triangle)

– int[nT][3]: about 24 bytes per vertex

• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• total storage: 36 bytes per vertex (factor of 2 savings)
• represents topology and geometry separately
• finding neighbors is at least well defined

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Indexed triangle set

20

• Often need to store additional information besides just the
geometry

• Can store additional data at faces, vertices, or edges
• Examples

– colors stored on faces, for faceted objects
– information about sharp creases stored at edges
– any quantity that varies continuously (without sudden changes, or

discontinuities) gets stored at vertices

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Data on meshes

21

• Surface normals
– when a mesh is approximating a curved surface, store normals at vertices

• Surface parameterizations
– providing a 2D coordinate system on the surface

• Positions
– at some level this is just another piece of data
– position varies continuously between vertices

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Key types of vertex data

22

• Tangent plane
– at a point on a smooth surface in 3D, there is a unique plane tangent to the

surface, called the tangent plane

• Normal vector
– vector perpendicular  

to a surface (that is,  
to the tangent plane)

– only unique for smooth  
surfaces (not at corners, 
edges)

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Differential geometry 101

23

• A surface in 3D is a two-dimensional thing
• Sometimes we need 2D coordinates for points on the surface
• Defining these coordinates is parameterizing the surface
• Examples:

– cartesian coordinates on a rectangle (or other planar shape)
– cylindrical coordinates (θ, y) on a cylinder
– latitude and longitude on the Earth’s surface
– spherical coordinates (θ, ɸ) on a sphere

• Spoiler alert:
– in graphics, parameterizations are most often used for texture mapping.
– therefore many systems call the parameters “texture coordinates.”

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Surface parameterization

24

• position:

• normal is position  
(easy!)

• texture coordinates

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Example: unit sphere

25

ɸ
θ

x = cos ✓ sin�

y = sin ✓

z = cos ✓ cos�

u =
✓

⇡
+

1

2

v =
�

2⇡

• Piecewise planar approximation converges pretty quickly to
the smooth geometry as the number of triangles increases
– for mathematicians: error is O(h2)

• But the surface normals don’t converge so well
– normal is constant over each triangle, with discontinuous jumps across

edges
– for mathematicians: error is only O(h)

• Better: store the “real” normal at each vertex, and interpolate
to get normals that vary gradually across triangles

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

How to think about vertex normals

26

• Approximating circle with increasingly many segments
• Max error in position error drops  

by factor of 4 at each step
• Max error in normal  

only drops 
by factor of 2

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Interpolated normals—2D example

27

16

32

64

8%, 11°

2%, 6°

0.5%, 3°

• Triangles
– specify (u,v) for each vertex
– define (u,v) for interior by linear interpolation

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

(u,v)

(uc,vc)

(ub,vb)

(ua,va)

Parameterizing a single triangle

28

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

• in many cases we care about the mesh being able to bound a
region of space nicely

• in other cases we want triangle meshes to fulfill assumptions
of algorithms that will operate on them (and may fail on
malformed input)

• two completely separate issues:
– mesh topology: how the triangles are connected  

(ignoring the positions entirely)
– geometry: where the triangles are in 3D space

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Validity of triangle meshes

29

• same geometry, different mesh topology:

• same mesh topology, different geometry:

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Topology/geometry examples

30

• strongest property: be a manifold
– this means that no points  

should be "special"
– interior points are fine
– edge points: each edge  

must have exactly 2 triangles
– vertex points: each vertex  

must have one loop of triangles
• slightly looser: manifold with

boundary
– weaken rules  

to allow boundaries 
 

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Topological validity

31

manifold not 
manifold

with boundary

• Consistent orientation
– Which side is the “front” or “outside” of the surface and which is the “back”

or “inside?”
– rule: you are on the outside when you see the vertices in counter-clockwise

order
– in mesh, neighboring triangles should agree about which side is the front!
– caution: not always possible

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Topological validity

32

AB

C

D

AB

C

D

OK bad

non-orientable

• generally want non-self-intersecting surface
• hard to guarantee in general

– because far-apart parts of mesh might intersect 
 

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Geometric validity

33

• Take advantage of the  
mesh property
– each triangle is usually  

adjacent to the previous
– let every vertex create a triangle by reusing the second and third vertices of

the previous triangle
– every sequence of three vertices produces a triangle (but not in the same

order)
– e. g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to 

(0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
– for long strips, this requires about one index per triangle

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle strips

34

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle strips

4, 0

35

• array of vertex positions

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex
• array of index lists

– int[nS][variable]: 2 + n indices per strip

– on average, (1 + ε) indices per triangle (assuming long strips)
• 2 triangles per vertex (on average)
• about 4 bytes per triangle (on average)

• total is 20 bytes per vertex (limiting best case)
– factor of 3.6 over separate triangles; 1.8 over indexed mesh

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle strips

36

• Same idea as triangle strips, but keep oldest rather than
newest
– every sequence of three vertices produces a triangle
– e. g., 0, 1, 2, 3, 4, 5, … leads to 

(0 1 2), (0 2 3), (0 3 4), (0 4 5), …
– for long fans, this requires  

about one index per triangle
• Memory considerations exactly the  

same as triangle strip

© 2018 Steve Marschner • Cornell CS4620 Spring 2018

Triangle fans

37

