Triangle meshes I

CS 4620 Lecture 2

© 2018 Steve Marschner • 1

CS4620/21 late policy

- We use slip days
- You have 7 slip days for 4620, 7 separate ones for 4621
 - e.g. you could turn in Ray 1 4 days late and Splines 3 days late. You are out of slip days for further 4620 assignments, but you could still turn in one 4621 assignment 7 days late
- Accounting is separate per individual
 - so it's possible for you to have slip days left but your partner not to
- Each late day beyond 7 incurs a 10 point late penalty

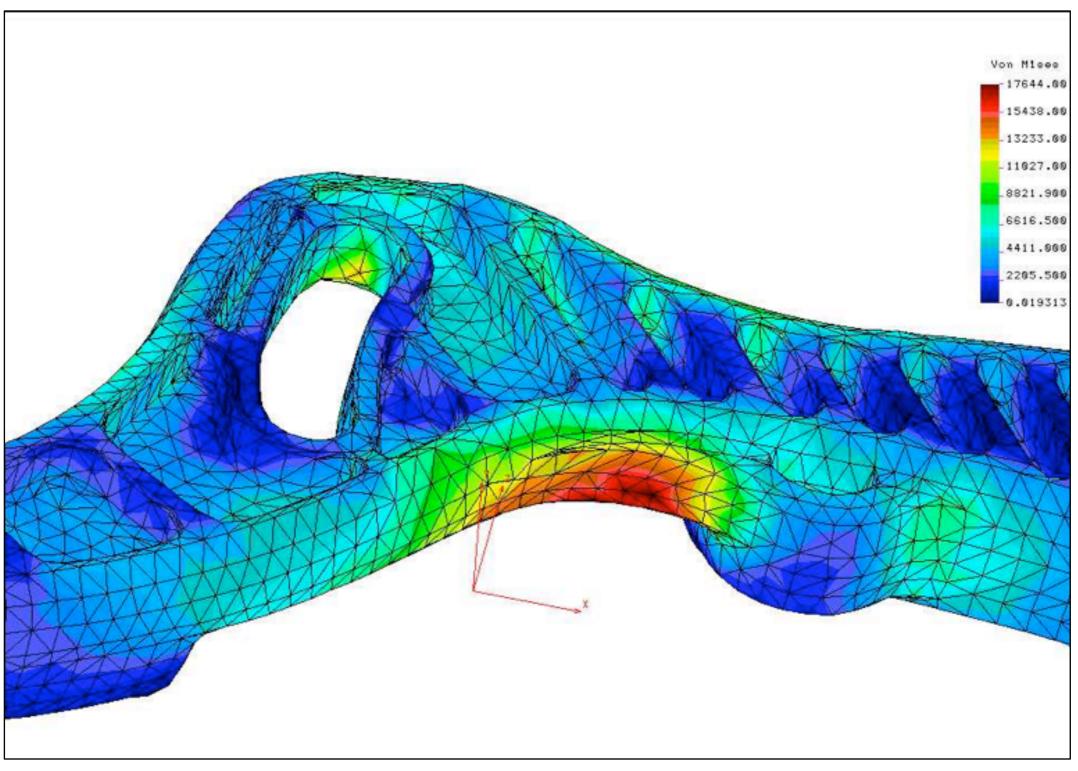
- i.e. project earns 93/100, is 2 days late, receives 73/100

- Regardless of late penalties, assignments can't be turned in more than 7 days late
- No slip days for 4621 final project

Andrzej Barabasz

spheres

approximate sphere



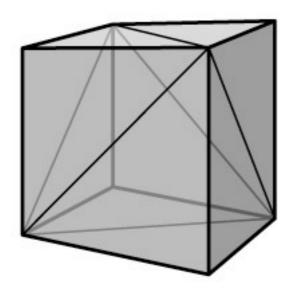
PATRIOT Engineering

finite element analysis



Ottawa Convention Center

A small triangle mesh



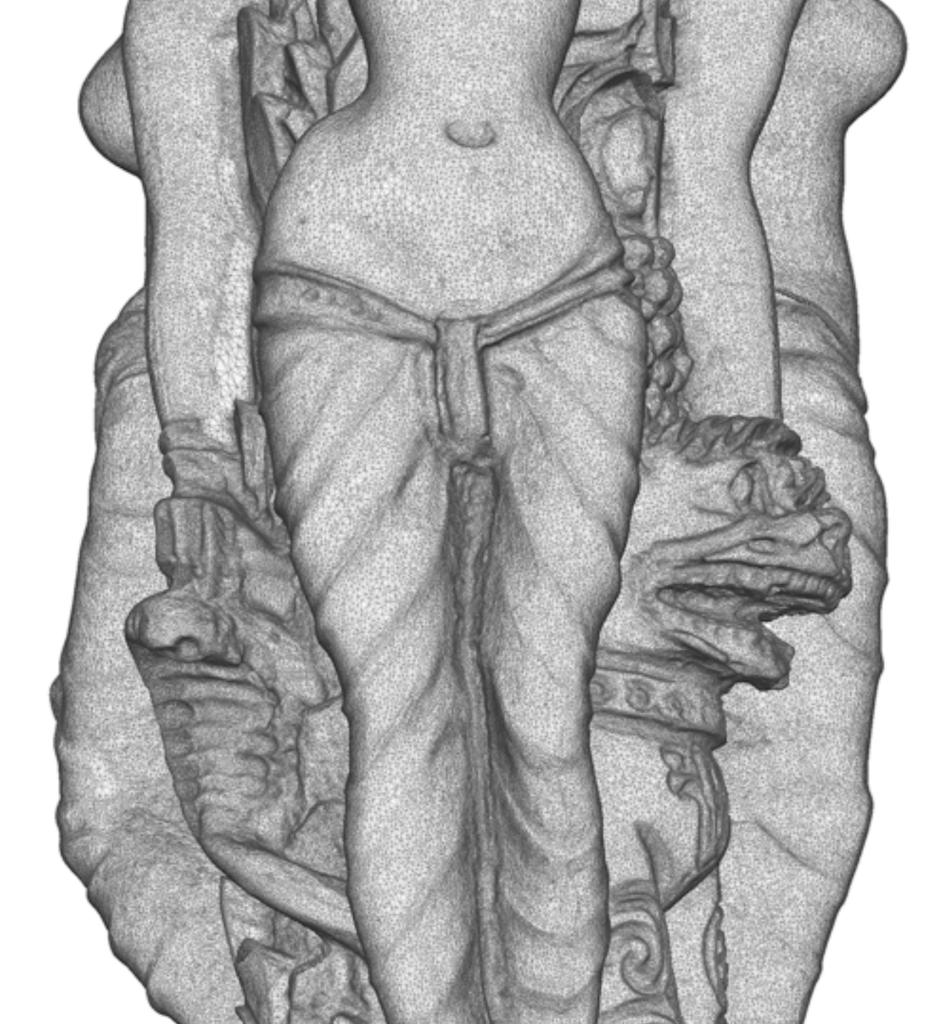
12 triangles, 8 vertices

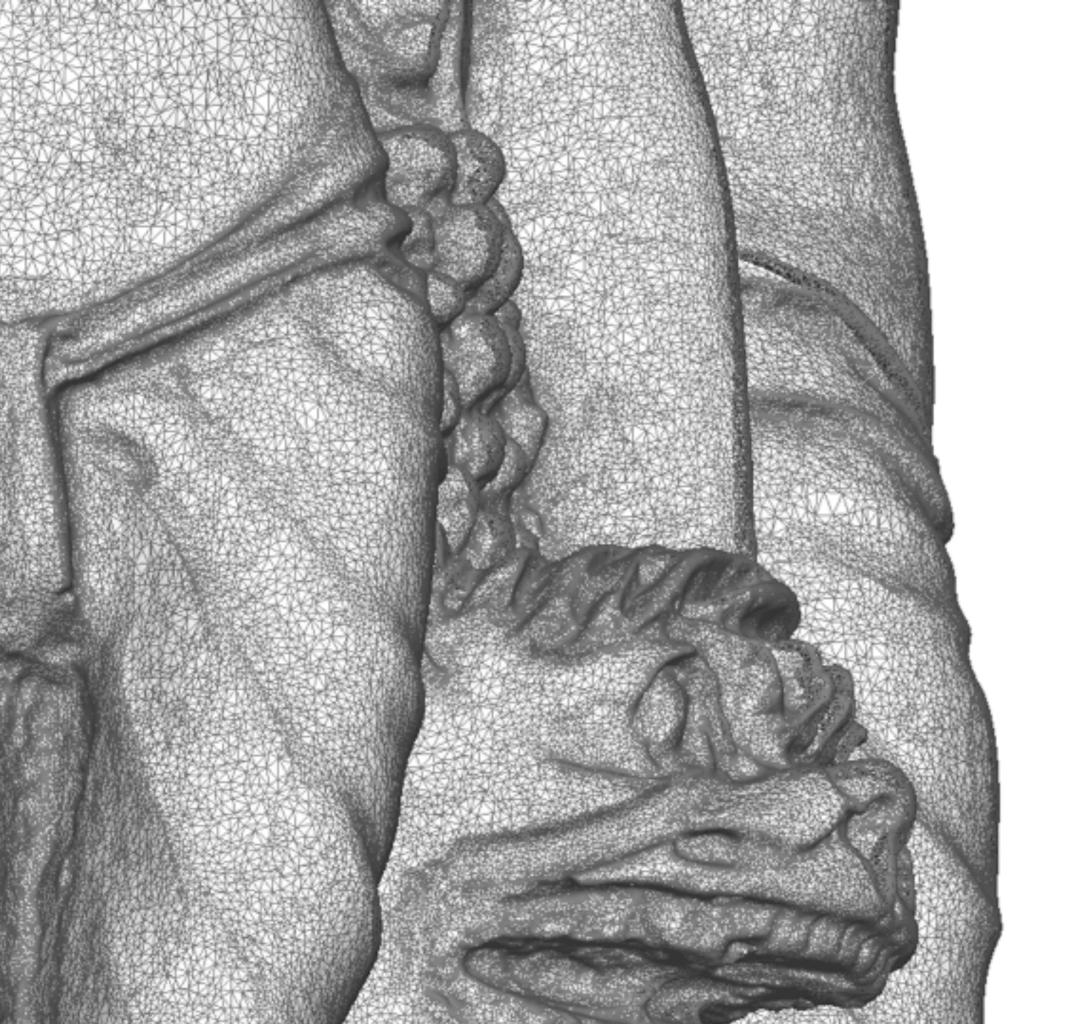
A large mesh

10 million trianglesfrom a high-resolution3D scan

-scan by XYZRGB, inc., image by MeshLab project Traditional Thai sculpture-







about a trillion-triangle worldwide model from semi-automatically processed satellite, aerial, and street photography

Le Pain Quotidien

ati Roll Comp

ckerbocker

okuniya New

Ruby Tuesday

Screen Repair

Bravo Kosher Pizza

arriott New

Culture Espresso

Google

Urban Outfitters ᅌ

Search Google Maps

Tagine

st Salad

f America ial Center nkadelic Studios

Wells Fargo Bank

Mr. Broadway

B&J Fabrics

Shrine and Parish Ch of Holy Innocents Hotel Times Square

DVD Store

tarbucks

Winter Village at Bryant Park

Archer Hotel New Yor

Bryant Park Grill

Triangles

- Defined by three vertices
- Lives in the plane containing those vertices
- Vector normal to plane is the triangle's normal
- Conventions (for this class, not everyone agrees):
 - vertices are counter-clockwise as seen from the "outside" or "front"
 - surface normal points towards the outside ("outward facing normals")

Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a piecewise planar surface
 - almost everywhere, it is planar
 - exceptions are at the edges where triangles join
- Often, it's a piecewise planar approximation of a smooth surface
 - in this case the creases between triangles are artifacts—we don't want to see them

Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points

• Efficiency of queries

- all vertices of a triangle
- all triangles around a vertex
- neighboring triangles of a triangle
- (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing

Representations for triangle meshes

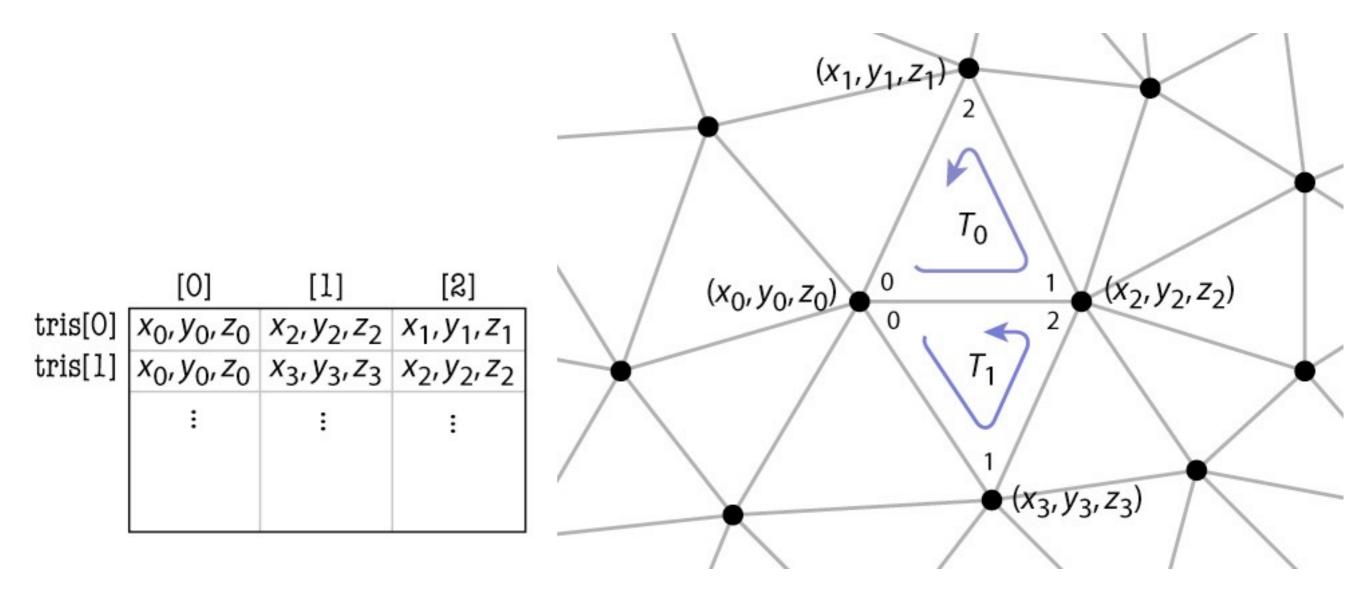
- Separate triangles
- Indexed triangle set
 shared vertices

crucial for first assignment

- Triangle strips and triangle fans
 - compression schemes for fast transmission
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes

Interesting and useful but not used in Mesh assignment

Separate triangles



Separate triangles

- array of triples of points
 - $float[n_T][3][3]$: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)

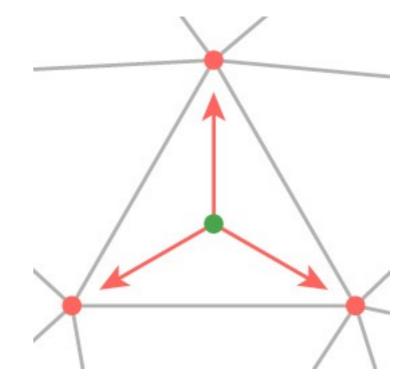
various problems

- wastes space (each vertex stored 6 times)
- cracks due to roundoff
- difficulty of finding neighbors at all

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

```
Triangle {
    Vertex vertex[3];
    }
Vertex {
    float position[3]; // or other data
    }
```

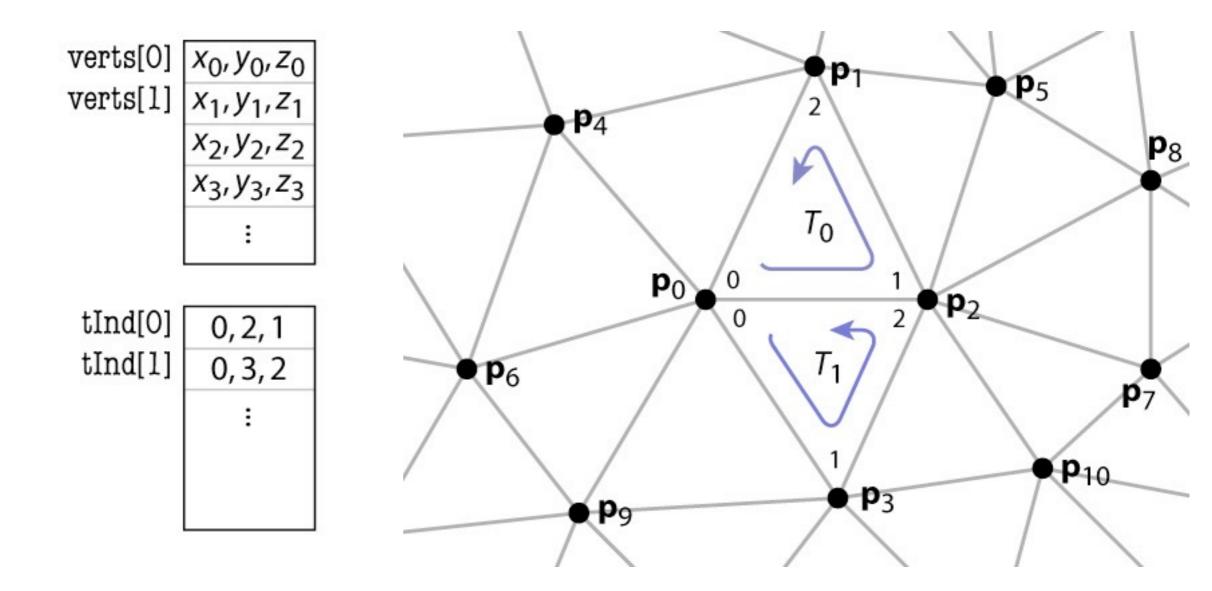


```
// ... or ...
```

```
Mesh {
```

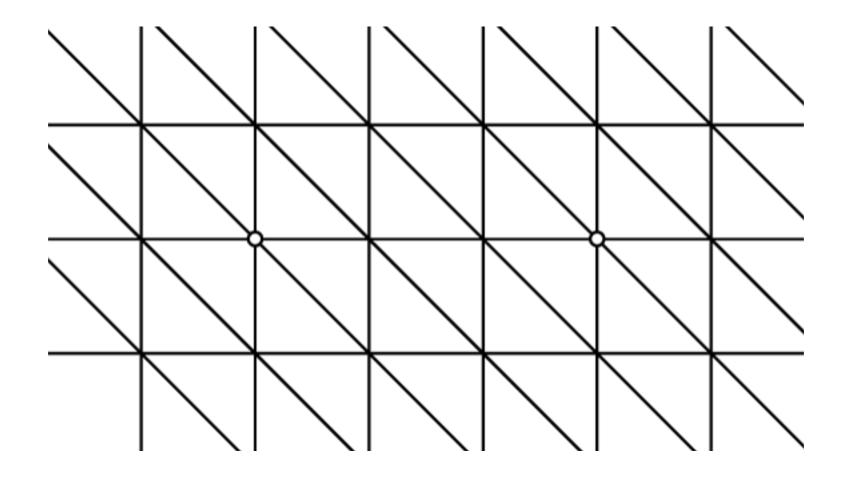
```
float verts[nv][3]; // vertex positions (or other data)
int tInd[nt][3]; // vertex indices
}
```

Indexed triangle set



Estimating storage space

- $n_T = \#$ tris; $n_V = \#$ verts; $n_E = \#$ edges
- Rule of thumb: $n_T:n_E:n_V$ is about 2:3:1



Indexed triangle set

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - $int[n_T]$ [3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Data on meshes

- Often need to store additional information besides just the geometry
- Can store additional data at faces, vertices, or edges

• Examples

- colors stored on faces, for faceted objects
- information about sharp creases stored at edges
- any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices

Key types of vertex data

Surface normals

- when a mesh is approximating a curved surface, store normals at vertices

• Surface parameterizations

- providing a 2D coordinate system on the surface

• Positions

- at some level this is just another piece of data
- position varies continuously between vertices

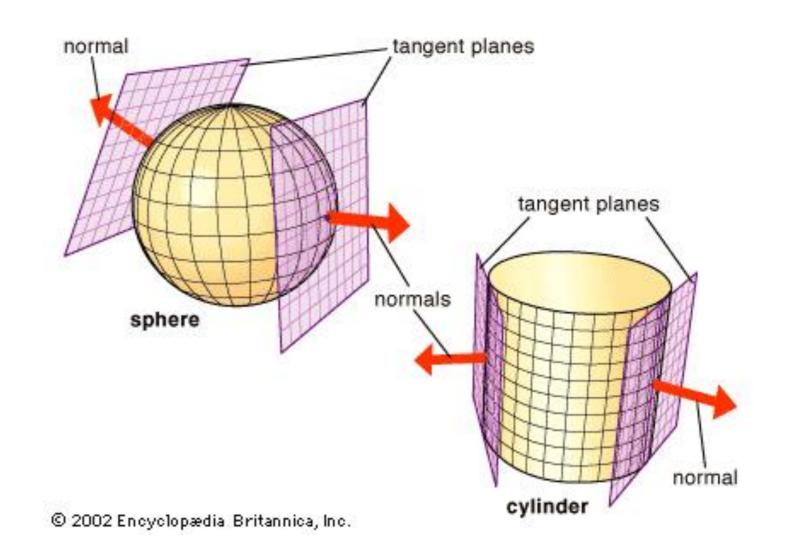
Differential geometry 101

Tangent plane

- at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the *tangent plane*

Normal vector

- vector perpendicular
 to a surface (that is,
 to the tangent plane)
- only unique for smooth surfaces (not at corners, edges)



Surface parameterization

- A surface in 3D is a two-dimensional thing
- Sometimes we need 2D coordinates for points on the surface
- Defining these coordinates is *parameterizing* the surface

• Examples:

- cartesian coordinates on a rectangle (or other planar shape)
- cylindrical coordinates (θ , y) on a cylinder
- latitude and longitude on the Earth's surface
- spherical coordinates (θ, φ) on a sphere

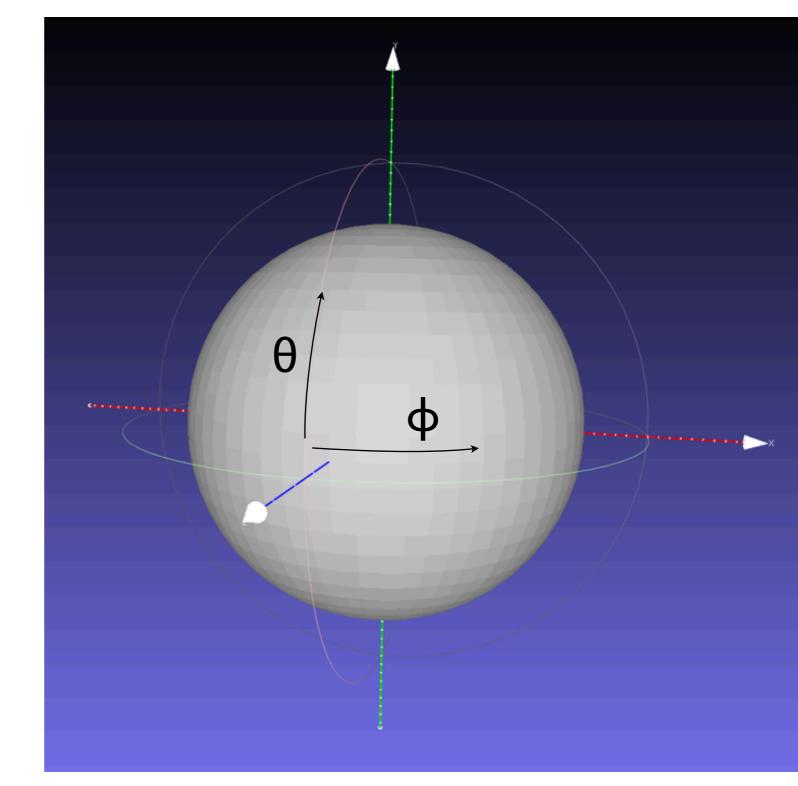
• Spoiler alert:

- in graphics, parameterizations are most often used for *texture mapping*.
- therefore many systems call the parameters "texture coordinates."

Example: unit sphere

- position:
 - $x = \cos \theta \sin \phi$ $y = \sin \theta$ $z = \cos \theta \cos \phi$
- normal is position (easy!)
- texture coordinates

$$u = \frac{\theta}{\pi} + \frac{1}{2}$$
$$v = \frac{\phi}{2\pi}$$

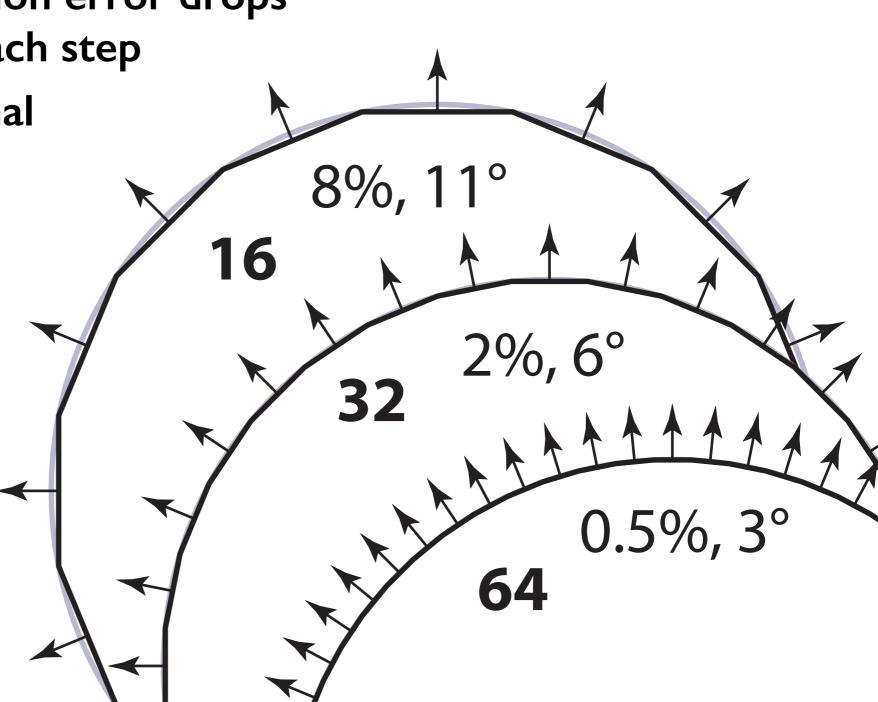


How to think about vertex normals

- Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases
 - for mathematicians: error is $O(h^2)$
- But the surface normals don't converge so well
 - normal is constant over each triangle, with discontinuous jumps across edges
 - for mathematicians: error is only O(h)
- Better: store the "real" normal at each vertex, and interpolate to get normals that vary gradually across triangles

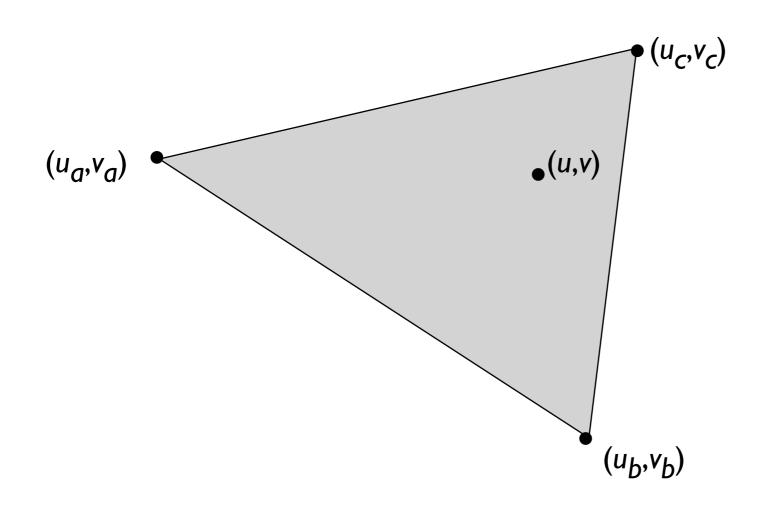
Interpolated normals—2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2

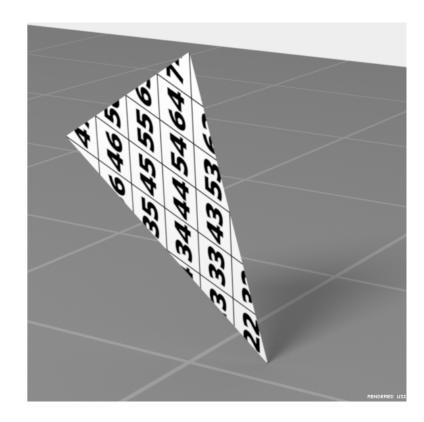


Parameterizing a single triangle

- Triangles
 - specify (*u*,*v*) for each vertex
 - define (u,v) for interior by linear interpolation



09	19	29	39	49	59	69	79	89	99
08	18	28	38	48	58	68	78	88	98
07	17	27	37	47	57	67	77	87	97
06	16	26	36	46	56	66	76	86	96
05	15	25	\$ 5	45	55	65	75	85	95
04	14	24	34	44	54	64	Ą	84	94
03	13	2/3	33	43	53	63	73	83	93
02	12	22	32	42	52	62	72	82	92
01	11	21	31	41	51	61	71	81	91
00	10	20	30	40	50	60	70	80	90

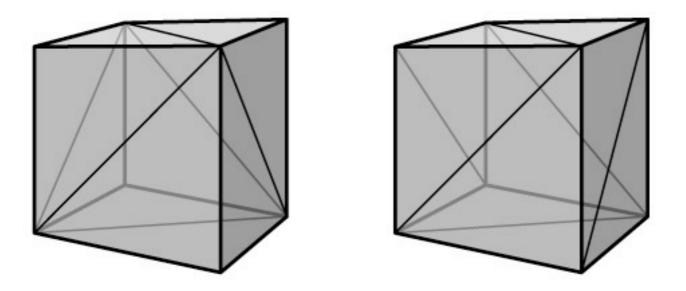


Validity of triangle meshes

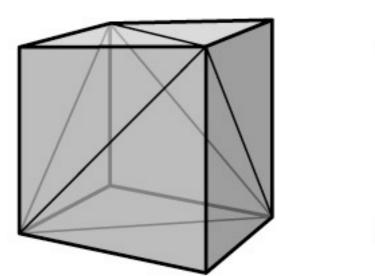
- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - mesh topology: how the triangles are connected (ignoring the positions entirely)
 - **geometry**: where the triangles are in 3D space

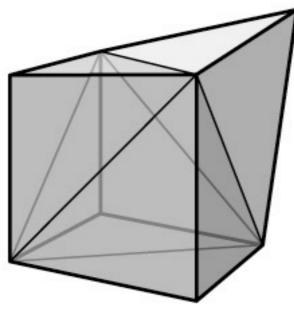
Topology/geometry examples

• same geometry, different mesh topology:



• same mesh topology, different geometry:

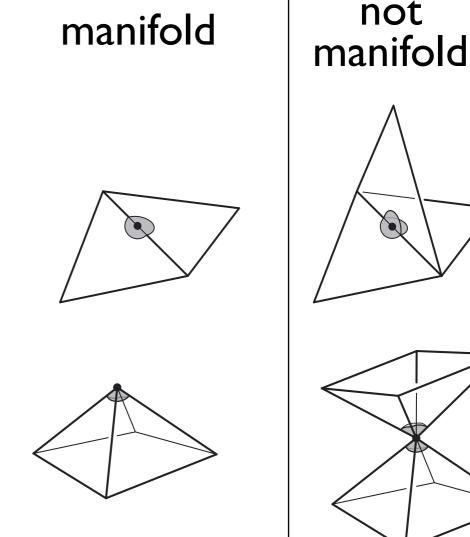




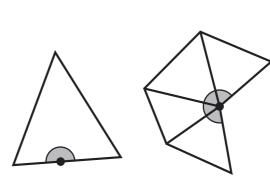
Topological validity

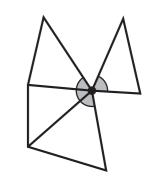
strongest property: be a manifold

- this means that no points should be "special"
- interior points are fine
- edge points: each edge must have exactly 2 triangles
- vertex points: each vertex
 must have one loop of triangles
- slightly looser: manifold with boundary
 - weaken rules
 to allow boundaries



with boundary



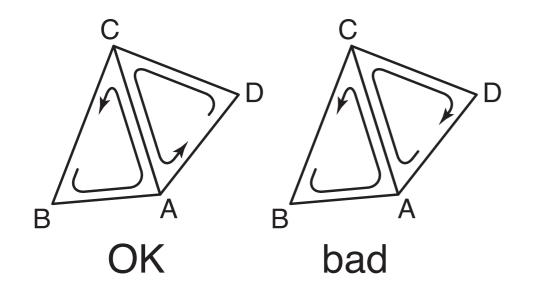


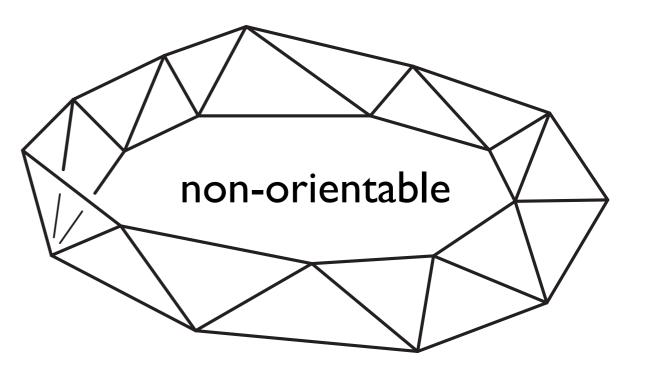
© 2018 Steve Marschner • 31

Topological validity

Consistent orientation

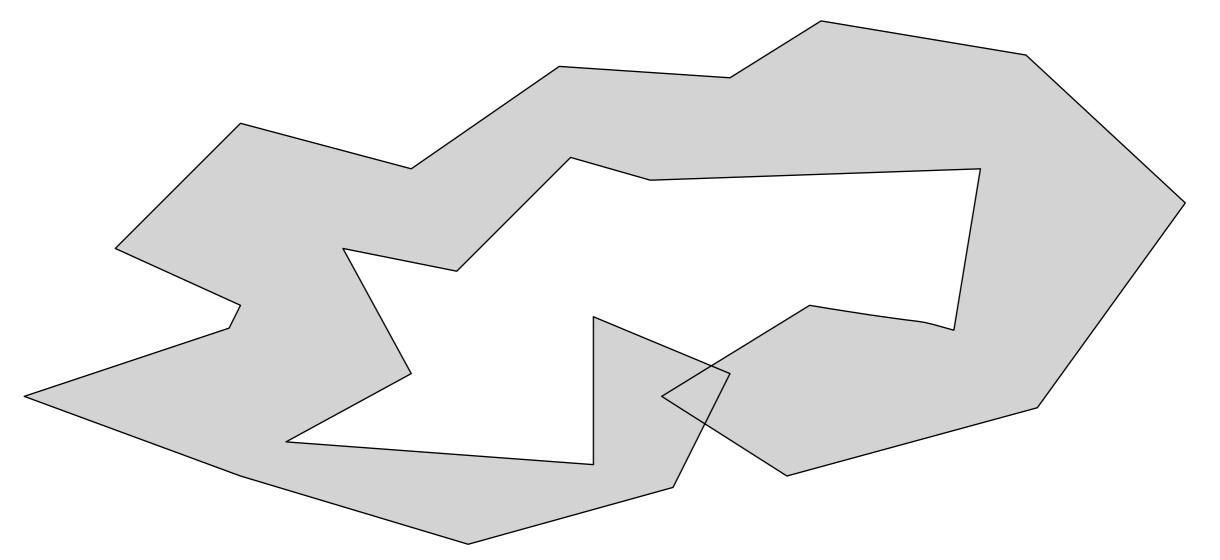
- Which side is the "front" or "outside" of the surface and which is the "back" or "inside?"
- rule: you are on the outside when you see the vertices in counter-clockwise order
- in mesh, neighboring triangles should agree about which side is the front!
- caution: not always possible





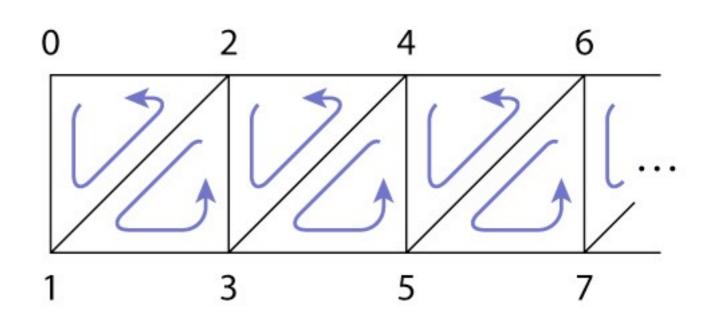
Geometric validity

- generally want non-self-intersecting surface
- hard to guarantee in general
 - because far-apart parts of mesh might intersect



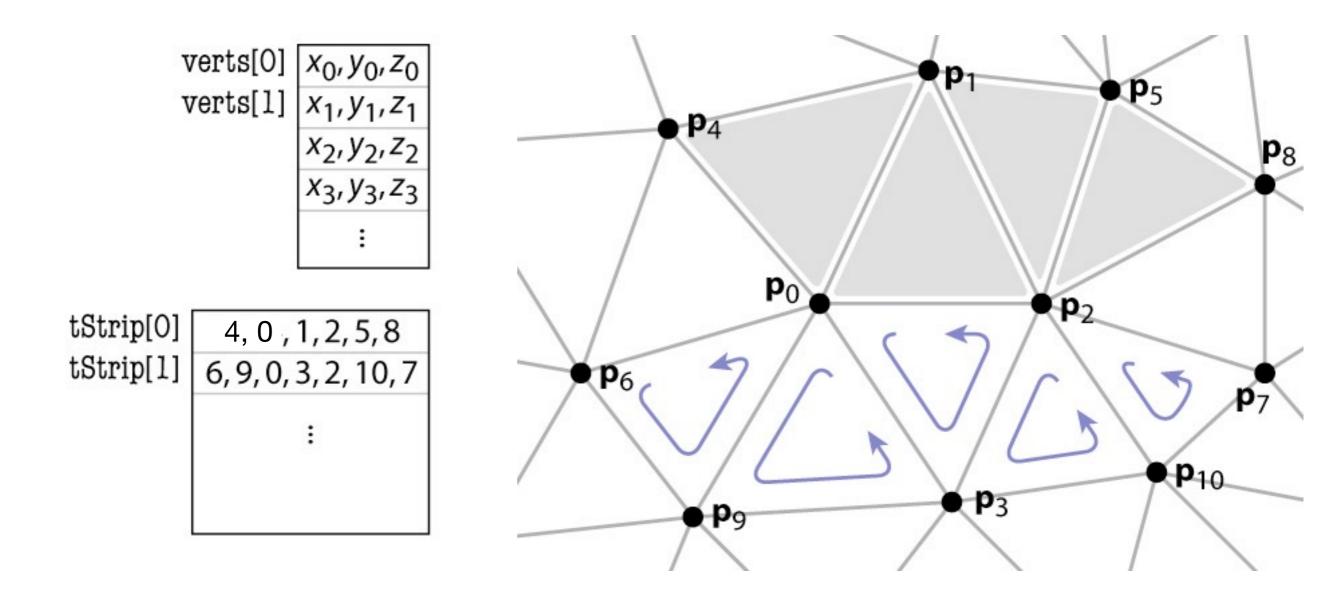
Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous



- let every vertex create a triangle by reusing the second and third vertices of the previous triangle
- every sequence of three vertices produces a triangle (but not in the same order)
- e.g., 0, 1, 2, 3, 4, 5, 6, 7, ... leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), ...
- for long strips, this requires about one index per triangle

Triangle strips



Triangle strips

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int[n_s][variable]: 2 + n indices per strip
 - on average, (I + ϵ) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh

Triangle fans

- Same idea as triangle strips, but keep oldest rather than newest
 - every sequence of three vertices produces a triangle
 - e.g., 0, 1, 2, 3, 4, 5, ... leads to
 (0 1 2), (0 2 3), (0 3 4), (0 4 5), ...
 - for long fans, this requires about one index per triangle
- Memory considerations exactly the same as triangle strip

