
Last Name: First Name: Cornell NetID:

CS 4620 Midterm, October 23, 2018

This 90-minute exam has 5 questions worth a total of 100 points. Use the back of the
pages if you need more space.

Academic Integrity is expected of all students of Cornell University at all times, whether
in the presence or absence of members of the faculty. Understanding this, I declare I
shall not give, use, or receive unauthorized aid in this examination.

Signature: Date

Last Name: First Name: Cornell NetID:

1. [20 points] Transformations

(a) Describe the action of each of the following matrices, as transformations in homogeneous
coordinates, in terms of rotation, scaling, and/or translation. For instance, the answer to
(0) is “a scale by a factor of 2 in the x direction followed by a translation of 1 in x.”

(0) :


2 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 (1) :


cos(30◦) 0 sin(30◦) 0

0 1 0 0
− sin(30◦) 0 cos(30◦) 0

0 0 0 1

 (2) :

0 −1 0
1 0 1
0 0 1

 (3) :

2 0 −1
0 2 −1
0 0 1



(1)

(2)

(3)

(b) Write each of the matrices (2) and (3) from part (a) as a product of three matrices in the
form TXT−1 where T is a translation and X is a rotation or scale about the origin.

(2)

(3)

(c) Describe each of the matrices (2) and (3) from part (a) as a rotation or scale about a
point. For instance, one answer to (0) would be “a scale by a factor of 2 in the x direction
about the point (−1, 0, 0).”

(2)

(3)

Page 2

Last Name: First Name: Cornell NetID:

2. [20 points] Manipulation

Suppose you are implementing a 2D manipulation interface for a touchscreen device. Like our
Manipulators assignment, the UI has three modes, for translation, rotation, and scaling, and
it stores the object’s transformation as a product TRS where T , R, and S are a translation, a
rotation about the origin, and a scale about the origin.

But things are simpler than in the assignment; since the input and the manipulated object are
both 2D, there is no need for separate manipulation axes. Instead, when the user touches at p
and moves to q, we want to apply a translation, a rotation about the origin, or a scale about
the origin in the object’s local coordinates, that will make the point that appears on the screen
at p move to q (or comes as close to q as possible, in the case of rotation).

Translate mode Rotate mode

Scale mode

q

p

This is a 2D object, so the view transformation is a 2D affine transformation MV that maps
the visible area of the object to the rectangle [−1, 1] × [−1, 1]; we’ll call this 2D space NDC
(normalized device coordinates) just like in 3D. The view transformation is fixed during the
manipulation process. (Probably the UI provides some way for the user to scroll and zoom,
which would change MV , but we’re not concerned with that here.)

(a) What point in object space transforms to the point p in NDC?

Page 3

Last Name: First Name: Cornell NetID:

(b) Given the points p and q in NDC, work out the object’s new transformation after a touch
interaction in each of the three modes, in terms of the matrices T , R, and S that make
up its object transformation before the interaction. You can use the notation T (v) for a
translation by the vector v, R(θ) for a rotaion by the angle θ, and S(a, b) for a scale by a
on the x axis and b on the y axis.

For instance, your answer to (1) will be in the form TT (v)RS where v is some vector (you
have to figure out what it is) that depends on the points p and q.

(1) in translation mode, what is the object’s transformation after a drag from p to q?

(2) in rotation mode, what is the object’s transformation after a drag from p to q?

(3) in scaling mode, what is the object’s transformation after a drag from p to q?

Hint: you can check all three answers by ensuring that the point that transforms to p
under TRS transforms to q under your updated transformation.

Page 4

Last Name: First Name: Cornell NetID:

3. [20 points] Geometry images

In displacement mapping we use a scalar texture to modify the vertex positions of a mesh.
In some cases the input geometry can be pretty boring (like a flat square) and everything
interesting about the shape comes from the displacement texture (e.g. a mountain range made
by using an elevation map for the displacement). A related technique to displacement mapping
is geometry images, which takes this one step farther: the original vertex position is completely
ignored, and the actual position is completely determined by a 3D position texture.

In this problem we want you to write a vertex shader for geometry images. Specifically,
your shader should expect vertices with texture coordinates as the only vertex attribute, along
with the same uniform matrices we used in the Shaders assignment (see declarations below).
The object-space position of each vertex is defined by the value of the position texture at the
corresponding uv coordinates. The fragment shader is provided and is completely standard: it
uses the position and a varying normal to compute simple Lambertian lighting.

Hints: don’t forget you will need to compute the normal. The computation of the normal
uses exactly the same ideas as in displacement mapping, but is much simpler. You don’t need
the varyings derivU and derivV from the assignment, but you do still need to differentiate the
texture. You can use exactly the same approach as in the assignment (a finite difference with
a fixed stepsize of 0.0001), and don’t be concerned about any discretization or quantization
issues for this problem.

// --- begin vertex shader ---

// = object.matrixWorld

uniform mat4 modelMatrix;

// = camera.matrixWorldInverse * object.matrixWorld

uniform mat4 modelViewMatrix;

// = camera.projectionMatrix

uniform mat4 projectionMatrix;

// = camera.matrixWorldInverse

uniform mat4 viewMatrix;

// = inverse transpose of modelViewMatrix

uniform mat3 normalMatrix;

// = camera position in world space

uniform vec3 cameraPosition;

attribute vec2 uv;

varying vec3 vNormal;

Page 5

Last Name: First Name: Cornell NetID:

varying vec4 vPosition;

uniform sampler2D positionTexture;

main() {

// TODO: write your code here

}

//--- end vertex shader ---

//--- begin fragment shader ---

uniform vec3 lightColors[NUM_LIGHTS];

uniform vec3 lightPositions[NUM_LIGHTS]; // in eye space

uniform float exposure;

uniform vec3 diffuseColor;

varying vec3 vNormal;

varying vec4 vPosition;

vec3 to_sRGB(vec3 c) { return pow(c, vec3(1.0/2.2)); }

vec3 from_sRGB(vec3 c) { return pow(c, vec3(2.2)); }

Page 6

Last Name: First Name: Cornell NetID:

void main() {

vec3 N = normalize(vNormal);

vec3 V = normalize(-vPosition.xyz);

vec3 finalColor = vec3(0.0, 0.0, 0.0);

for (int i = 0; i < NUM_LIGHTS; i++) {

float r = length(lightPositions[i] - vPosition.xyz);

vec3 L = normalize(lightPositions[i] - vPosition.xyz);

vec3 H = normalize(L + V);

// calculate diffuse term

vec3 Idiff = diffuseColor * max(dot(N, L), 0.0);

finalColor += lightColors[i] * Idiff / (r*r);

}

// Only shade if facing the light

if (gl_FrontFacing) {

gl_FragColor = vec4(to_sRGB(finalColor * exposure), 1.0);

} else {

gl_FragColor = vec4(170.0/255.0, 160.0/255.0, 0.0, 1.0);

}

}

//--- end fragment shader ---

Page 7

Last Name: First Name: Cornell NetID:

4. [20 points] True/False

Circle whether each statement is true (T) or false (F). If it is true, explain why. If it is false,
explain why or provide a counterexample.

(a) T F An indexed triangle mesh will generally consume more storage than the same mesh written
as a list of separate triangles.

(b) T F The normal vector used for shading on a triangle mesh is always perpendicular to the
surface being shaded.

(c) T F In barycentric coordinates, the coordinates of a triangle’s vertices are all zeros and ones.

(d) T F Storing one additional byte at every vertex of an indexed triangle mesh generally uses
more space than storing one additional byte for every triangle of the same mesh.

(e) T F The intersection between a ray and a sphere is generally found using an implicit model of
the sphere.

(f) T F In orthographic viewing, the viewing rays all share the same ray direction.

(g) T F If A and B are two 2 × 2 rotation matrices, then AB = BA.

(h) T F If a 4 × 4 matrix represents a 3D affine transformation in homogeneous coordinates, then
its last row must be

[
0 0 0 1

]
.

(i) T F If a projective transformation is applied to a set of points evenly spaced along a line, the
resulting points will be collinear and evenly spaced.

(j) T F In homogeneous coordinates, the 3D point (x, y, z) is represented by the 4D point (x, y, z, 0).

Page 8

Last Name: First Name: Cornell NetID:

5. [20 points] Meshes

Consider four OBJ files, all with the same vertex data but indexed in different ways.

(a) Which of these will produce faceted shading?

(b) Which has continuous texture coordinates?

(c) For each of these 4 meshes, match them with the corresponding rendering on the next
page.

--- vertex data ---

v 1 1 1

v 0 1 1

v 1 0 1

v 1 1 0

vn 1 1 1

vn 1 0 0

vn 0 1 0

vn 0 0 1

vn 0 1 1

vn 1 0 1

vn 1 1 0

vt 0 0

vt 0 1

vt 1 0

vt 0.75 0.75

vt 0.5 0.5

--- index data 1 ---

f 1/5/4 2/5/4 3/5/4

f 1/5/2 3/5/2 4/5/2

f 1/5/3 4/5/3 2/5/3

--- index data 2 ---

f 1/1/4 2/2/4 3/3/4

f 1/1/2 3/2/2 4/3/2

f 1/1/3 4/2/3 2/3/3

--- index data 3 ---

f 1/1/1 2/2/5 3/3/6

f 1/1/1 3/2/6 4/3/7

f 1/1/1 4/2/7 2/3/5

--- index data 4 ---

f 1/4/1 2/1/5 3/2/6

f 1/4/1 3/2/6 4/3/7

f 1/4/1 4/3/7 2/1/5

Texture File:

Hint: OBJ indices start at 1, and the ordering of index data is
position/texture/normal.

Has Faceted
Shading?

Has Continuous
Texture Coords?

Rendering Number

Page 9

Last Name: First Name: Cornell NetID:

(1) (2) (3)

(4) (5) (6)

(7) (8)

Page 10

