Rasterization

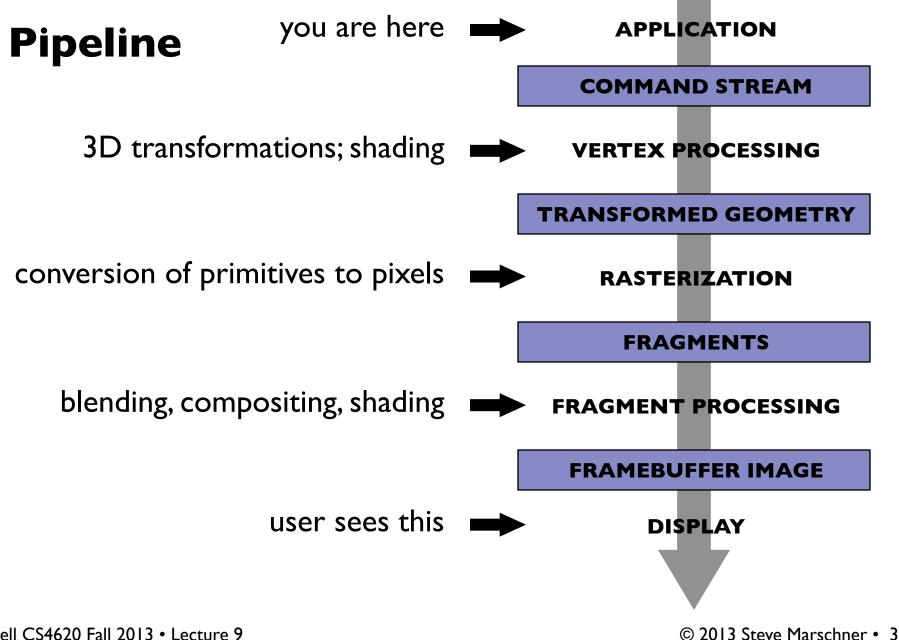
CS4620 Lecture 9

Cornell CS4620 Fall 2013 • Lecture 9

© 2013 Steve Marschner • 1

The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
 - software, e.g. Pixar's REYES architecture
 - many options for quality and flexibility
 - hardware, e.g. graphics cards in PCs
 - amazing performance: millions of triangles per frame
- We'll focus on an abstract version of hardware pipeline
- "Pipeline" because of the many stages
 - very parallelizable
 - leads to remarkable performance of graphics cards (many times the flops of the CPU at ~1/5 the clock speed)



Primitives

- Points
- Line segments
 - and chains of connected line segments
- Triangles
- And that's all!
 - Curves? Approximate them with chains of line segments
 - Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - simple, uniform, repetitive: good for parallelism

Rasterization

- First job: enumerate the pixels covered by a primitive

 simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - e.g. normals at vertices
 - will see applications later on

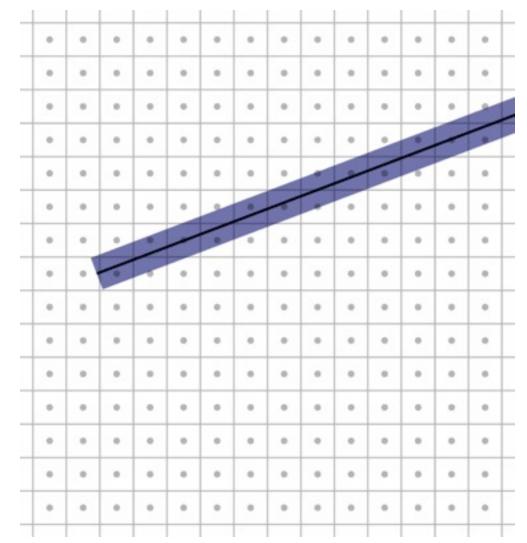
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

•			•										
								0					
	0	0	0			0	•		•		0		
•					•		•				•	/	
•	0	0		•		•		•	~	0			
			•	•	0	0	-	•			0	0	
•				-	•	0	•						
•		-	•			0							
		0			0			0	0				0
•	0				0		•	0					
•	0								0				0
•													
0	0		0	0		0	0			0		0	
0	0	0		0	0			0		0	0		
•													

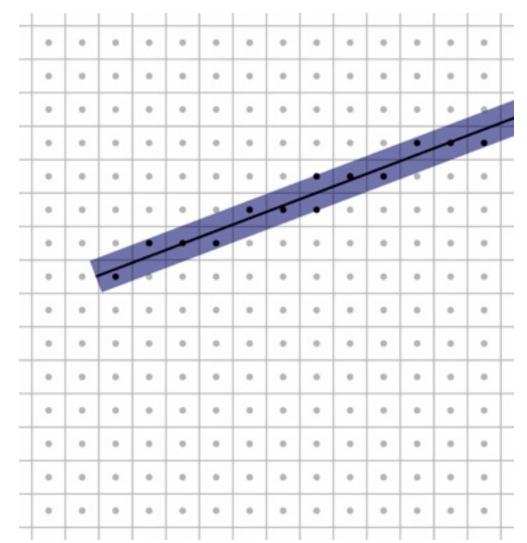
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside



Point sampling

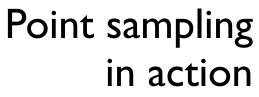
- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

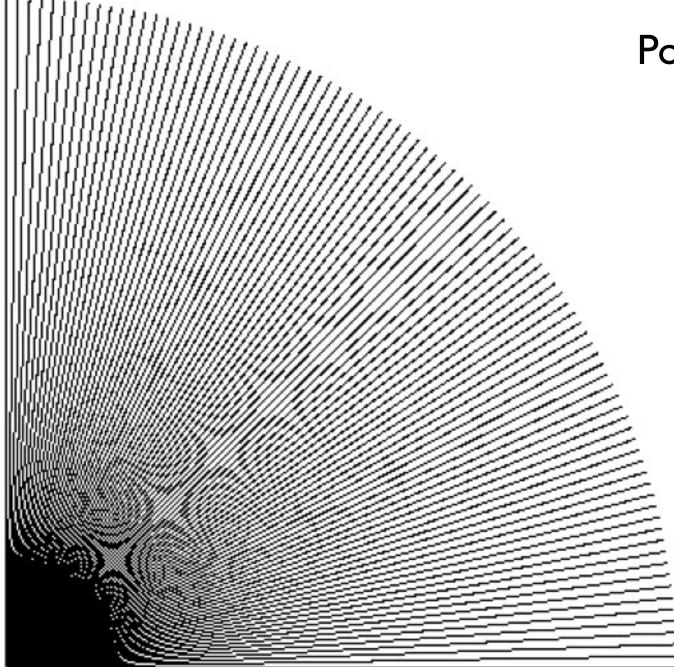


Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

0	0						•	•					0
0	0			•				0		0	0		0
0	0			0		0		0	0			0	
0	0		•	0		0	•	0	•	0			
0	. 0		•	0	•	0					0	.0	
0				0	0						0		
0	0	0						0	.0		0	0	0
•	0		0		+	0	•	0		0			0
	0		0	0	0	0		0	0	0		0	0
0	0							0	•	0			0
	0				0	0						0	
	. 0									0			
	0	0	0	0	0	0				0	0	0	.0
•	0			0	0	0	0	0	•	0	0	0	
0			0		0	0	0		•				
-		-	-					-		-		-	





© 2013 Steve Marschner • 8

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

•	0						.0	۰					
0					+						0	0	0
•				0		0		0	0				-
•	0		•	0		0	•	0	0		•	~	
	0			0		.0	•		-		-	•	
				0			-		•		0	0	
				~		-		0	. 0		0	0	
٠			-	•		0		0		0	0	0	
	0		0					0		0			
	0			0				0		0			
								.0		0		0	
•	0		0	0	0	0			0	0	0	0	.0
•	0			0	0	0	0	0	0	0	0	0	
0			0						0		0	0	
	-	-	-						-				-

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

1													
0	0	0				0	•	0		0	0	0	
0	0		0	0				0		0	0	0	
0	0			0		0		0		0			2
0	0		•	0		0	0	0	0		•	-	
0	0	. 0		0		.0			-		0	0	
0		.0		0			-	-	•		0	0	
0	0		-	-		0	.0	0	. 0		0	0	0
•	0		-	•		0	•	0		0	0	0	
	0		0	0		0		0		0		0	0
	0			0				0		0			
	0			+									
	0								. 0			0	
0	0	.0	0	0	0	0	0	0	0	0	0	0	.0
0	0		0	0		0	0	0	0	0	0	0	
0		.0	0		0		0		0		0	0	

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

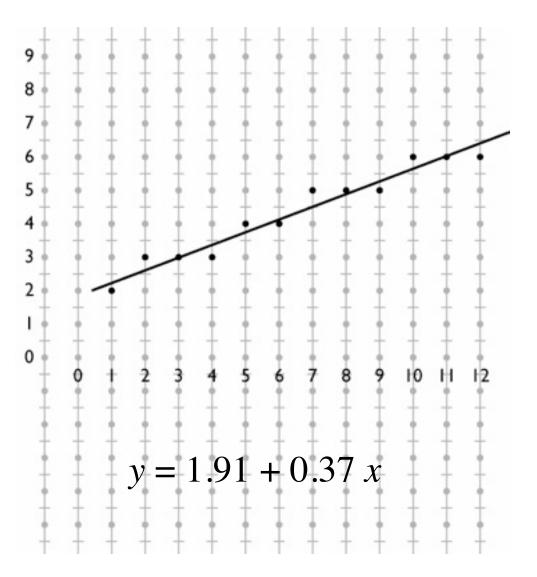
•	0		•				.0	۰					
0								0				0	
0	0							0	0				
0	0	0	•			0	0	0	0	0			
0	0	. 0		0		0					0		
					0			. 0				0	
0	0	.0.					0	0	. 0			0	0
0	0		0		+	0	0	0		0		0	
	0		0	0		0		0	0	0		0	0
	0					0		0		0		0	0
	0				0							0	0
	0	0				.0		0	.0	0		0	
0			0	0			0	0	0	0	0	0	.0
	0		0	0	0	0	0	0	0	0	0	0	
•			0				0		0				0

Midpoint algorithm in action

Algorithms for drawing lines

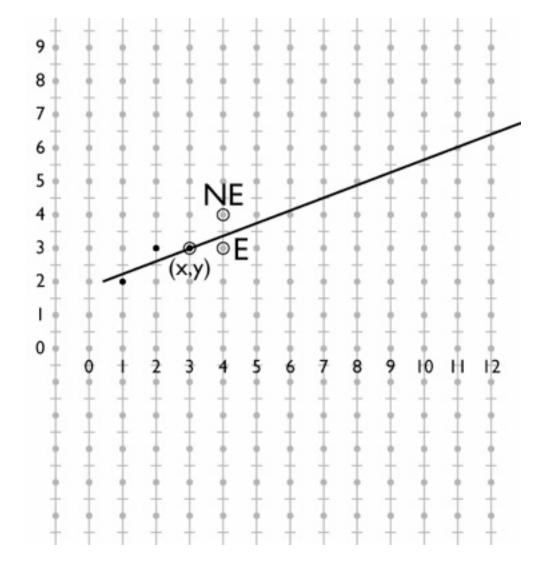
- line equation: y = b + m x
- Simple algorithm: evaluate line equation per column
- W.I.o.g. $x_0 < x_1$; $0 \le m \le 1$

```
for x = ceil(x0) to floor(x1)
    y = b + m*x
    output(x, round(y))
```



Optimizing line drawing

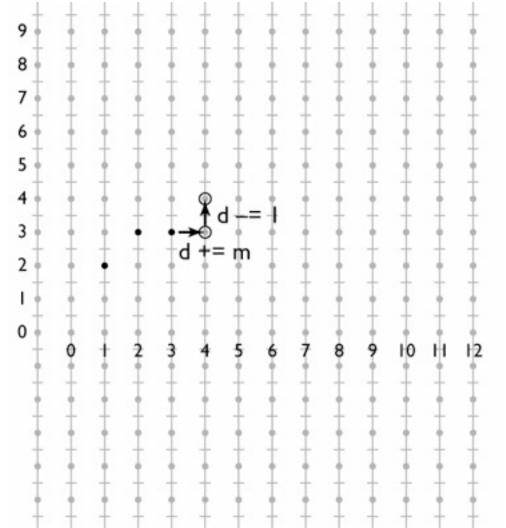
- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- d = m(x+1) + b y
- d > 0.5 decides
 between E and NE



Optimizing line drawing

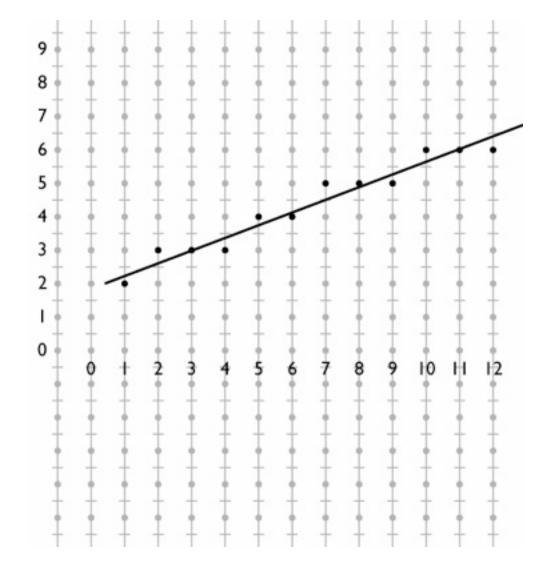
•
$$d = m(x+1) + b - y$$

- Only need to update d for integer steps in x and y
- Do that with addition
- Known as "DDA" (digital differential analyzer)



Midpoint line algorithm

```
x = ceil(x0)
y = round(m*x + b)
d = m*(x + 1) + b - y
while x < floor(x1)
if d > 0.5
    y += 1
    d -= 1
x += 1
d += m
output(x, y)
```

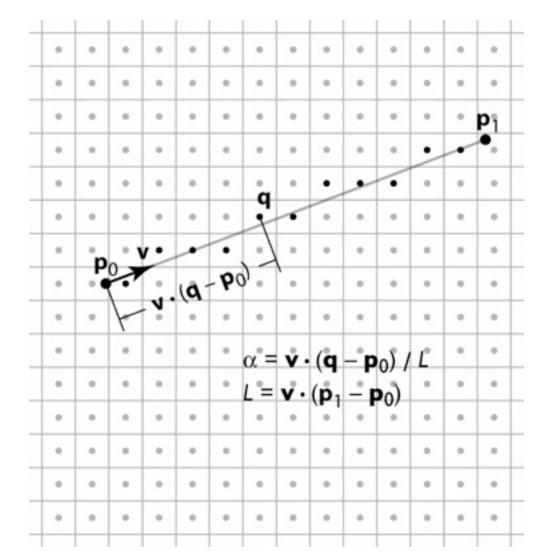


- We often attach attributes to vertices
 - e.g. computed diffuse color of a hair being drawn using lines
 - want color to vary smoothly along a chain of line segments
- Recall basic definition
 - $ID: f(x) = (1 \alpha) y_0 + \alpha y_1$

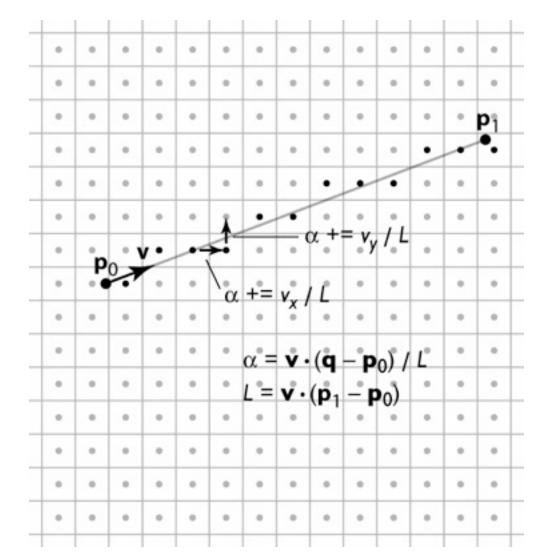
- where
$$\alpha = (x - x_0) / (x_1 - x_0)$$

• In the 2D case of a line segment, alpha is just the fraction of the distance from (x_0, y_0) to (x_1, y_1)

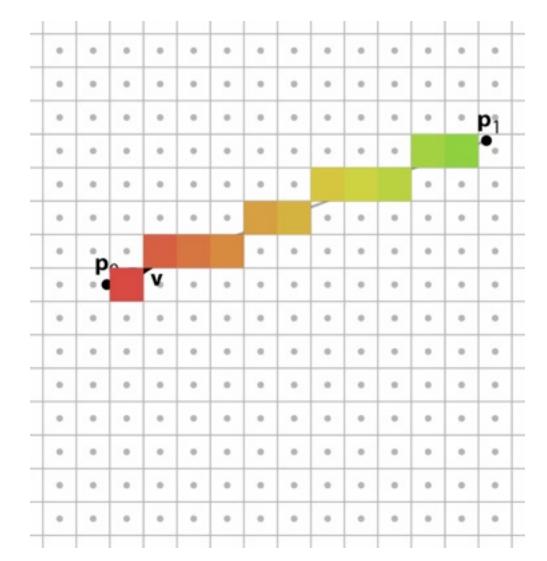
- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use
 DDA to interpolate



- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use
 DDA to interpolate



- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use
 DDA to interpolate

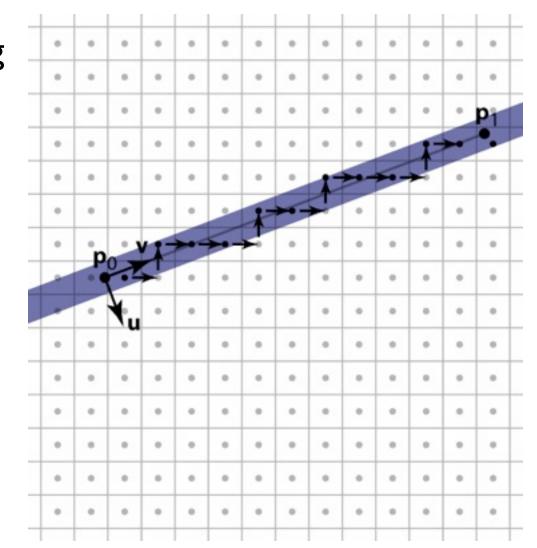


Alternate interpretation

- We are updating d and α as we step from pixel to pixel
 d tells us how far from the line we are
 α tells us how far along the line we are
- So d and α are coordinates in a coordinate system oriented to the line

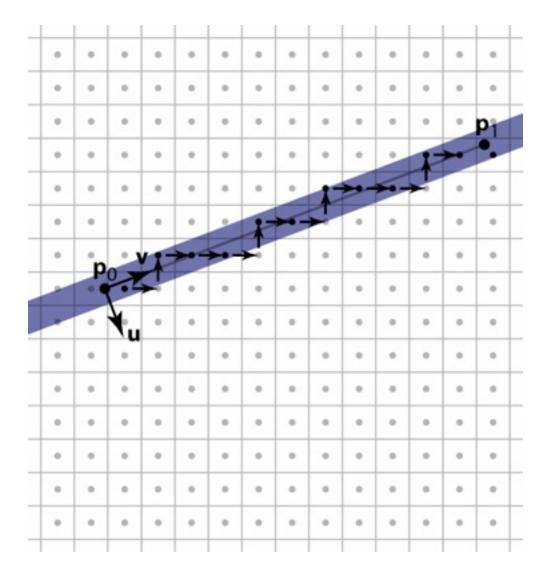
Alternate interpretation

- View loop as visiting all pixels the line passes through Interpolate d and α for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation



Pixel-walk line rasterization

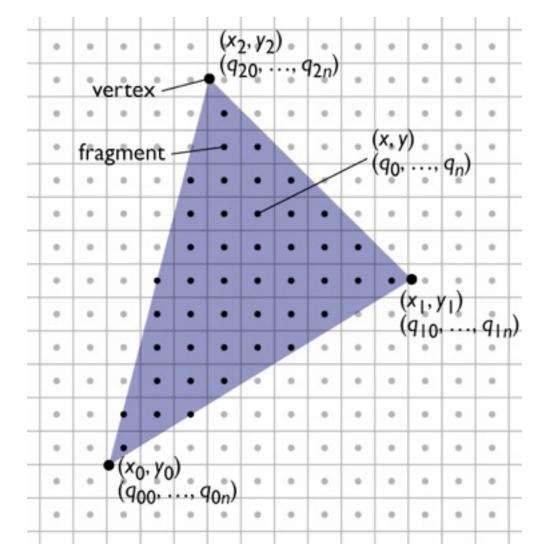
```
x = ceil(x0)
y = round(m*x + b)
d = m*x + b - y
while x < floor(x1)
if d > 0.5
y += 1; d -= 1;
else
x += 1; d += m;
if -0.5 < d ≤ 0.5
output(x, y)
```



- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon's area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside

- Input:
 - three 2D points (the triangle's vertices in pixel space)
 - $(x_0, y_0); (x_1, y_1); (x_2, y_2)$
 - parameter values at each vertex
 - $q_{00}, \dots, q_{0n}; q_{10}, \dots, q_{1n}; q_{20}, \dots, q_{2n}$
- Output: a list of fragments, each with
 - the integer pixel coordinates (x, y)
 - interpolated parameter values q_0, \ldots, q_n

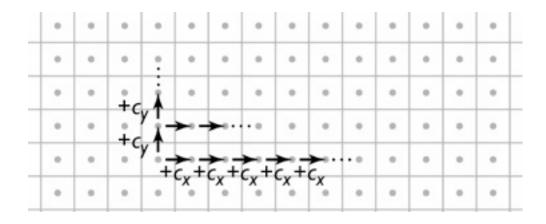
- Summary
 - I evaluation of linear functions on pixel grid
 - 2 functions defined by parameter values at vertices
 - 3 using extra parameters to determine fragment set



Incremental linear evaluation

- A linear (affine, really) function on the plane is: $q(x,y) = c_x x + c_y y + c_k$
- Linear functions are efficient to evaluate on a grid:

$$q(x+1,y) = c_x(x+1) + c_y y + c_k = q(x,y) + c_x$$
$$q(x,y+1) = c_x x + c_y(y+1) + c_k = q(x,y) + c_y$$

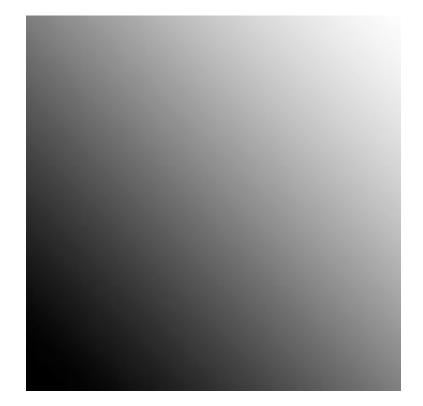


Incremental linear evaluation

```
linEval(xl, xh, yl, yh, cx, cy, ck) {
```

```
// setup
qRow = cx*xl + cy*yl + ck;
```

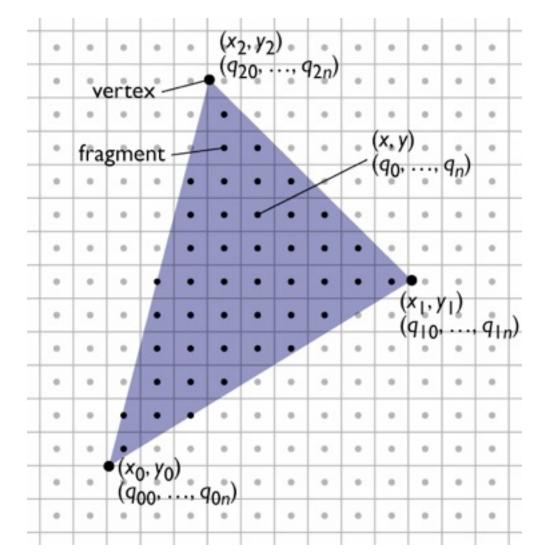
```
// traversal
for y = yl to yh {
    qPix = qRow;
    for x = xl to xh {
        output(x, y, qPix);
        qPix += cx;
    }
    qRow += cy;
}
```



$$c_x = .005; c_y = .005; c_k = 0$$

(image size 100x100)

- Summary
 - I evaluation of linear functions on pixel grid
 - 2 functions defined by parameter values at vertices
 - 3 using extra parameters to determine fragment set



Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_x, c_y , and c_k that define the (unique) linear function that matches the given values at all 3 vertices
 - this is 3 constraints on 3 unknown coefficients:

 $c_x x_0 + c_y y_0 + c_k = q_0$ (each states that the function $c_x x_1 + c_y y_1 + c_k = q_1$ agrees with the given value $c_x x_2 + c_y y_2 + c_k = q_2$ at one vertex)

- leading to a 3x3 matrix equation for the coefficients:

$$\begin{bmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{bmatrix} \begin{bmatrix} c_x \\ c_y \\ c_k \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \end{bmatrix}$$

(singular iff triangle is degenerate)

Defining parameter functions

• More efficient version: shift origin to (x_0, y_0)

$$q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0$$

$$q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1$$

$$q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2$$

- now this is a 2x2 linear system (since q_0 falls out):

$$\begin{bmatrix} (x_1 - x_0) & (y_1 - y_0) \\ (x_2 - x_0) & (y_2 - y_0) \end{bmatrix} \begin{bmatrix} c_x \\ c_y \end{bmatrix} = \begin{bmatrix} q_1 - q_0 \\ q_2 - q_0 \end{bmatrix}$$

- solve using Cramer's rule (see Shirley):

$$c_x = (\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)$$

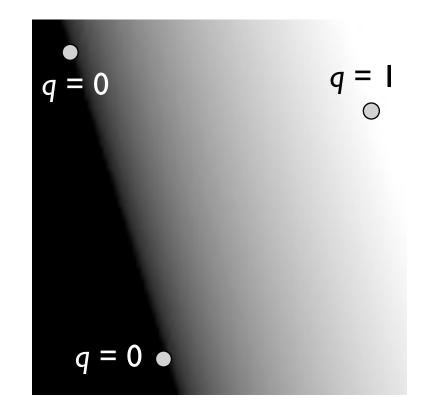
$$c_y = (\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)$$

Defining parameter functions

```
linInterp(xl, xh, yl, yh, x0, y0, q0,
x1, y1, q1, x2, y2, q2) {
```

// setup det = $(x1-x0)^{*}(y2-y0) - (x2-x0)^{*}(y1-y0);$ cx = $((q1-q0)^{*}(y2-y0) - (q2-q0)^{*}(y1-y0)) / det;$ cy = $((q2-q0)^{*}(x1-x0) - (q1-q0)^{*}(x2-x0)) / det;$ qRow = cx^{*}(x1-x0) + cy^{*}(y1-y0) + q0;

```
// traversal (same as before)
for y = yl to yh {
    qPix = qRow;
    for x = xl to xh {
        output(x, y, qPix);
        qPix += cx;
    }
    qRow += cy;
}
```

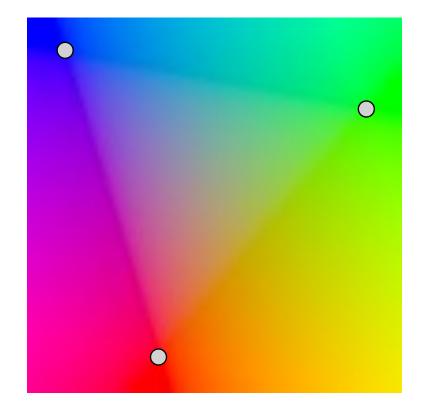


Interpolating several parameters

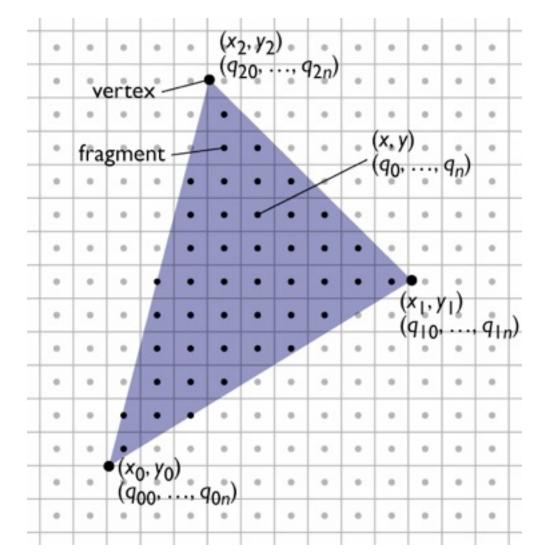
```
linInterp(xl, xh, yl, yh, n, x0, y0, q0[],
x1, y1, q1[], x2, y2, q2[]) {
```

```
// setup
for k = 0 to n-1
    // compute cx[k], cy[k], qRow[k]
    // from q0[k], q1[k], q2[k]
```

```
// traversal
for y = yl to yh {
   for k = 1 to n, qPix[k] = qRow[k];
   for x = xl to xh {
      output(x, y, qPix);
      for k = 1 to n, qPix[k] += cx[k];
    }
   for k = 1 to n, qRow[k] += cy[k];
}
```

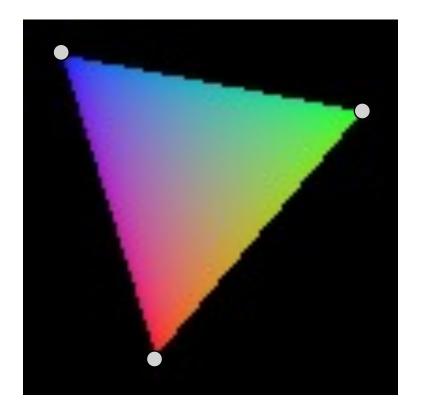


- Summary
 - I evaluation of linear functions on pixel grid
 - 2 functions defined by parameter values at vertices
 - 3 using extra parameters to determine fragment set



Clipping to the triangle

- Interpolate three barycentric coordinates across the plane
 - each barycentric coord is
 I at one vert. and 0 at
 the other two
- Output fragments only when all three are > 0.



Barycentric coordinates

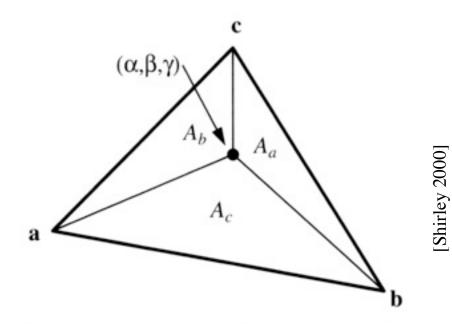
- A coordinate system for triangles
 - algebraic viewpoint:

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

 $\alpha + \beta + \gamma = 1$

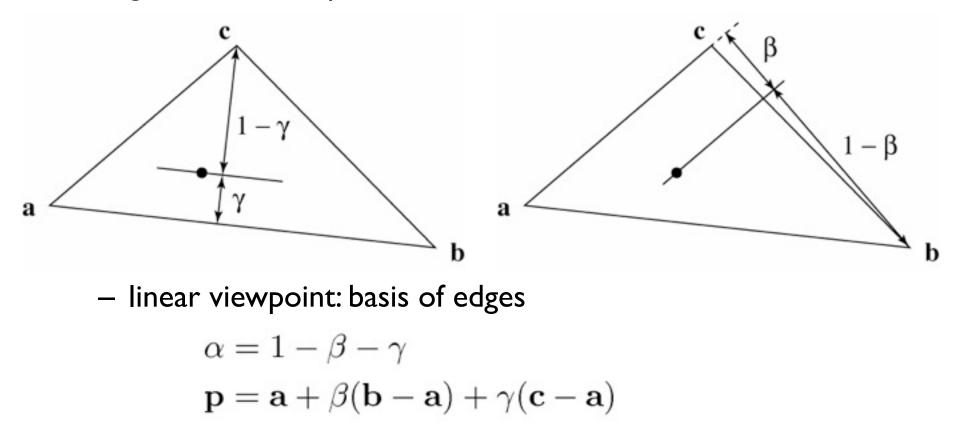
- geometric viewpoint (areas):
- Triangle interior test:

 $\alpha>0;\quad \beta>0;\quad \gamma>0$



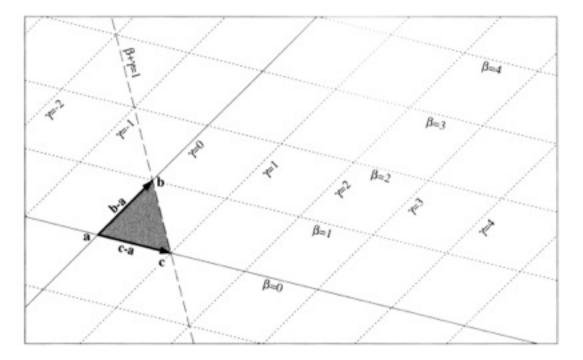
Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distances



Barycentric coordinates

• Linear viewpoint: basis for the plane

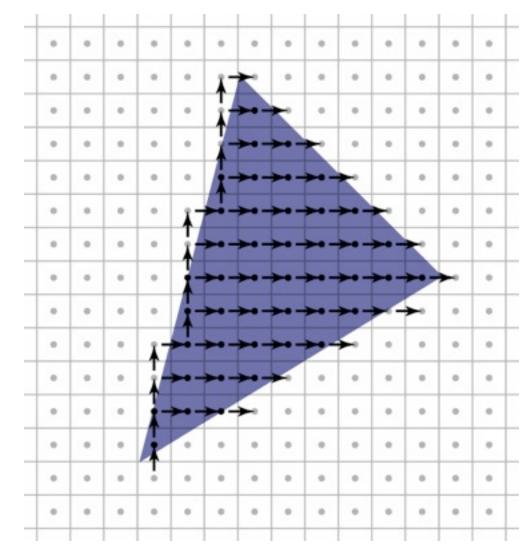


- in this view, the triangle interior test is just

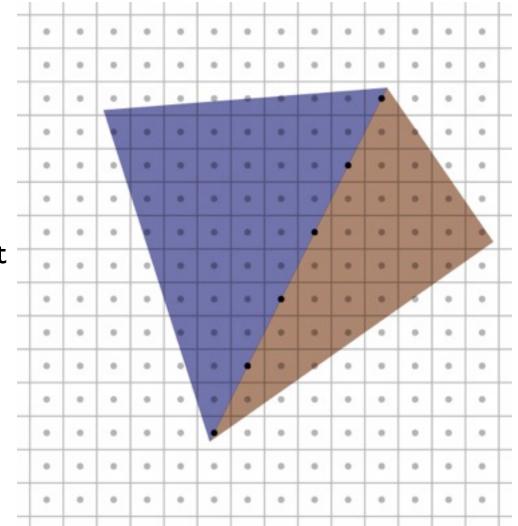
 $\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1$

Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment



- Exercise caution with rounding and arbitrary decisions
 - need to visit these pixels once
 - but it's important not to visit them twice!



Clipping

- Rasterizer tends to assume triangles are on screen
 - particularly problematic to have triangles crossing the plane z = 0
- After projection, before perspective divide
 - clip against the planes x, y, z = 1, -1 (6 planes)
 - primitive operation: clip triangle against axis-aligned plane

Clipping a triangle against a plane

- 4 cases, based on sidedness of vertices
 - all in (keep)
 - all out (discard)
 - one in, two out (one clipped triangle)
 - two in, one out (two clipped triangles)

