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Announcements
• Final exam 

• 12/05, in-class 

• Not unlimited time 

• Review session 
• Tomorrow, 1PM, zoom (see Ed Discussions) 

• Material: everything covered in class
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What Have We Done so far in reliable transport?

• Started from first principles 

• Correctness condition for reliable transport 

• … to understanding why feedback from receiver is necessary (sol-v1) 

• … to understanding why timers may be needed (sol-v2) 

• … to understanding why window-based design may be needed (sol-v3) 

• … to understanding why cumulative ACKs may be a good idea 

• Very close to modern TCP
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What Have We Done so far in reliable transport?

• To understanding TCP-specific mechanisms 
• Connections 

• Segments, sequence numbers, ACKs 

• Retransmissions (based on timeout, and duplicate ACKs) 

• Flow control 

• Congestion Control 
• cwnd increase (no congestion) 

• cwnd decrease (congestion, isolated & extreme) 

• To understanding TCP properties 
• Sawtooth behavior 
• Convergence under stable state 

• Max-min fair resource allocation
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The Many Failings of TCP Congestion Control

1. Fills up queues (large queueing delays) 
2. Every segment not ACKed is a loss (non-congestion related losses) 
3. Produces irregular saw-tooth behavior  
4. Biased against long RTTs (unfair) 
5. Not designed for short flows 
6. Easy to cheat



(1) TCP Fills Up Queues

• TCP only slows down when queues fill up 

• High queueing delays 

• Means that it is not optimized for latency 

• What is it optimized for then? 

• Answer: Fairness (discussion in next few slides) 

• And many packets are dropped when buffer fills 

• Alternative 1: Use small buffers  

• Is this a good idea? 

• Answer: No, bursty traffic will lead to reduced utilization 

• Alternative: Random Early Drop (RED) 
• Drop packets on purpose before queue is full 

• A very clever idea, but results in unfairness



(2) Non-Congestion-Related Losses?

• If packets are corrupted (no congestion) 

• TCP would think the network is congested 

• Incorrect response! 

• Several possible solutions: 

• Can use Explicit Congestion Notification (ECN) 
• As routers get congested, they mark the packet with ECN 

• Thus, receiver can differentiate between corruption & congestion



(3) Sawtooth Behavior Uneven

• TCP throughput is “choppy" 

• Repeated swings between W/2 to W 

• Some apps would prefer sending at a steady rate 

• E.g., streaming apps 

• A solution: “Equation-based congestion control” 

• Ditch TCP’s increase/decrease rules and just follow the equation: 

• [Matthew Mathis, 1997] TCP Throughput = MSS/RTT sqrt(3/2p) 
• Where p is drop rate 

• Measure drop percentage p and set rate accordingly 

• Following the TCP equation ensures we’re TCP friendly 

• I.e., use no more than TCP does in similar setting



(4) Bias Against Long RTTs

• Flows get throughput inversely proportional to RTT 

• TCP unfair in the face of heterogeneous RTTs! 
• [Matthew Mathis, 1997] TCP Throughput = MSS/RTT sqrt(3/2p) 

• Where p is drop rate 

• Flows with long RTT will achieve lower throughput

A1 B1

A2 B2

100 ms

200 ms

Bottleneck Link



(5) How Short Flows Fare?

• Internet traffic: 

• Elephant and mice flows 

• Elephant flows carry most bytes (>95%), but are very few (<5%) 

• Mice flows carry very few bytes, but most flows are mice 

• 50% of flows have < 1500B to send (1 MTU);  

• 80% of flows have < 100KB to send 

• Problem with TCP? 

• Mice flows do not have enough packets for duplicate ACKs!! 

• Drop ~=~ Timeout (unnecessary high latency) 

• These are precisely the flows for which latency matters!!! 

• Another problem: 

• Starting with small window size leads to high latency



(6) Cheating

• TCP was designed assuming a cooperative world 

• No attempt was made to prevent cheating 

• Many ways to cheat, will present three



Cheating #1: ACK-splitting (receiver)

• TCP Rule: grow window by one MSS 
for each valid ACK received 

• Send M (distinct) ACKs for one MSS 

• Growth factor proportional to M

RTT

Data 1:1461

Data 1461:2921Data 2921:4381
Data 4381:5841
Data 5841:7301 

ACK 486

ACK 973

ACK 1461



Cheating #2: Increasing CWND Faster (source)

• TCP Rule: increase window by one MSS for each valid ACK received 

• Increase window by M per ACK 

• Growth factor proportional to M



Cheating #3: Open Many Connections (source/receiver)

• Assume 

• A start 10 connections to B 

• D starts 1 connection to E 

• Each connection gets about the same throughput 

• Then A gets 10 times more throughput than D

A Bx

D E
y



Cheating

• Either sender or receiver can independently cheat! 

• Why hasn’t Internet suffered congestion collapse yet? 
• Individuals don’t hack TCP (not worth it) 

• Companies need to avoid TCP wars 

• How can we prevent cheating  

• Verify TCP implementations 

• Controlling end points is hopeless 

• Nobody cares, really



Now you know about computer networking  

as much as I do :-)



Taking 25 steps back!
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A set of network elements connected together, that implement a set of 
protocols for the purpose of sharing resources at the end hosts

What is a computer network?



Sharing networks

• Two approaches 
• Reservation (circuit switching) 

• Statistical multiplexing (packet switching) 

• Motivation for WHY modern networks use “packets” 

• How to implement this?
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• Application opens a socket that allows it to connect to the network stack 

• Maps name of the web site to its address using DNS 

• The network stack at the source embeds the address and port for both 
the source and the destination in packet header 

• Each router constructs a routing table using a distributed algorithm 

• Each router uses destination address in the packet header to look up the 
outgoing link in the routing table 

• And when the link is free, forwards the packet  

• When a packet arrives the destination:  

• The network stack at the destination uses the port to forward the 
packet to the right application

The end-to-end story



• How to break system into modules 

• Layering 

• Where are modules implemented 

• End-to-End Principle 

• Where is state stored? 
• Fate-Sharing

Realizing end-to-end design: Three Principles



• Application: Providing network support for apps 

• Transport (L4): (Reliable) end-to-end delivery 

• Network (L3): Global best-effort delivery 

• Datalink (L2): Local best-effort delivery 

• Physical (L1): Bits on wire

Five Layers (Top - Down)



• Broadcast medium: Ethernet and CSMA/CD 

• We studied that Broadcast Ethernet does not scale to large networks 
• Motivation for switched Ethernet 

• Broadcast storm: if using broadcast on switched Ethernet 
• Motivation for Spanning Tree Protocol 

• Limitations of Spanning Tree Protocol:  
• Low bandwidth utilization, high latency, unnecessary processing 

• Does not scale to the entire Internet 

• Motivation for routing protocols in the Internet

Link Layer (L2)



• Internet Protocol:  
• Addressing, packet header as an interface, routing 

• Routing tables: 
• Correctness and validity: Dead ends, loops 

• A collection of spanning trees, one per destination 

• Constructing valid routing tables (within an ISP) 
• Link-state and distance-vector protocols 

• Focused a lot on learning via examples 

• Can still have loops: failures remain to be a pain 

• How to use routing tables 
• Packet header as an interface 
• Learnt why packet headers look like the way they do

Network Layer (L3)



• Internet Protocol:  
• Addressing, packet header as an interface, routing 

• Addressing: 
• Link layer uses “flat” addresses 

• Does not scale to Internet: motivation for IP addresses  

• Scalability challenges: Routing table sizes, #updates 

• Solution: Hierarchical addressing 

• Forwarding 
• Switch architecture 
• Longest Prefix matching for forwarding at line rate 

• Scheduling using priorities 

Network Layer (L3), Cont.



• Internet Protocol:  
• Addressing, packet header as an interface, routing 

• Limitations of link-state and distance-vector routing: 
• Require visibility of the entire Internet 

• ISPs do not like that: motivation for Inter-domain routing 

• Border Gateway Protocol 
• A simple modification of distance-vector protocol  

• Routing with policies 
• Customer-provider-peer relationships 
• Gao-Rexford policies 

• Completes the network layer: provides connectivity

Network Layer (L3), Cont.



• DHCP: Dynamic Host Configuration Protocol 
• For each host to figure out its IP address, local DNS, first-hop router 

• ARP: Address Resolution Protocol 
• For finding other servers on the same local area network (L2) 

• Mapping from IP addresses to names (MAC addresses) 

• Domain Name System 
• Mapping Human readable destination names to IP addresses 
• Hierarchical structure

Details for complete picture



• Goals of reliable transport 

• Correctness condition 

• Why do we need ACKs, timers, window-based design 

• One realization of reliable transport: TCP 
• Mostly implementation details following the above design 

• For max-min fairness, flow performance and utilization 

• Flow control 
• Ensuring the sender does not overwhelm the receiver 

• Via receiver advertised window size 

• Congestion control 
• Ensuring the sender does not overwhelm the network 

• Slow start, Additive-increase Multiplicative-decrease, timeouts

Transport Layer



Taking 1 step forward!
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Skate where the puck’s going, 
not where it’s been! 

- Walter Gretzky
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2016: +10%

2016: +18-20%

Where is the puck going? (CPU performance)



• #Cores: +18-20% 

• Per core: +10%
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+29%

Where is the puck going? (DRAM capacity)
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Tape is dead, 
Disk is tape, 
SSD is disk, 
RAM is the king! 

- Jim Gray

Where is the puck going?



+15%

Where is the puck going? (Memory bus)
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+33-40%

Where is the puck going? (Ethernet)
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Powerful 

implications

• Unsustainable CPU overheads of network stacks 

• End-to-end latency dominated by queueing delay 

• Remote memory faster than local SSD 

• When queueing delay = 0

Network Technology Trends
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Unsustainable CPU overheads
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• Existing network stacks were designed for 1Gbps networks 
• Known TCP problem: ~3.2Gbps per core 

• With low-level optimizations: ~9-12Gbps per core 

• 40Gbps would take >3 cores per server! 

• 100Gbps would take >8 cores per server!! 

• Take away: unsustainable cloud economics 
• Every core used for the stack is a core stolen from applications/

customers
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~2005 (1Gbps) 2018 (40Gbps)
Latency (us) % 

Contri
Latency (us) %

OS 1.90 10 1.70 27
Data copy 2.00 10 2.00 32
Switching 2.70 14 1.44 23

Propagawon delay 0.88 5 0.88 13

Transmission delay 11.44 61 0.29 5

TOTAL 18.92 6.30

Queueing 
(4MB buffers, 64 ports)

488.3 
(per congespon point)

12.21 
(per congespon point)

Curse of queueing delay

~2005 (1Gbps) 2018 (40Gbps)
Latency (us) % 

Contri
Latency (us) %

TOTAL 18.92 6.30

Queueing 
(4MB buffers, 64 ports)

488.3 
(per congespon point)

12.21 
(per congespon point)

• Take away: queueing delay is the core bottleneck 
• End-to-end latency bottlenecked by queueing delay
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• Under zero queueing: 
• Remote memory access takes less than 6.3us 

• Local SSD access latency today is 25us (hardware, ignoring stack) 

• Remote Direct Memory Access (RDMA) becomes feasible 

• However, RDMA requires lossless network fabric 
• Known problem with RDMA over Ethernet: congestion collapse 

• Take away: RDMA applicability limited by drops in network fabric

Remote Memory Faster than Local Storage



• Lot of research in “hardware offload” 
• Implementing TCP (and other mechanisms) on hardware 

• Lots of interesting challenges 

• Lot of research in low-latency transport design 
• TCP was not designed for low latency 

• New transport protocols for ultra low-latency 

• Lot of research in kernel-bypass 
• TCP requires processing each and every packet 

• 1Gbps links: 90,000 packets per second 

• 100Gbps links: 9 million packets per second 

• Extremely high CPU requirements 

• Bypass the kernel entirely  

• Implement congestion control in user space, in hardware?

Current Network Stacks are the Bottleneck!



• These are exciting times for computer networking 
• The first ever since the invention of the Internet 

• You are witness to the transformation!!!! 

• And, I am glad I got the chance to introduce you to this world :-) 
• You have made me a better teacher!!!! 

• Thank you. 

• Wherever you end up: 
• Please remember me 

• Say hello if you see me 

• Remember, there is nothing more important than 

• Knowing the fundamentals!!!! 
• Being happy!!!!

Closing Thoughts




