
Computer Networks:
Architecture and Protocols

CS4450

Lecture 24

TCP conges1on control

Rachit Agarwal

Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections

• Segments, Sequence numbers, ACKs
• TCP uses byte sequence numbers to identify payloads
• ACKs referred to sequence numbers
• Window sizes expressed in terms of # of bytes

• Retransmissions

• Can’t be correct without retransmitting lost/corrupted data
• TCP retransmits based on timeouts and duplicate ACKs

• Timeouts based on estimate of RTT

• Flow Control: Ensures the sender does not overwhelm the receiver

• Congestion Control: Dynamic adaptation to network path’s capacity

TCP Congestion Control

TCP congestion control: high-level idea

• End hosts adjust sending rate

• Based on implicit feedback from the network
• Implicit: router drops packets because its buffer overflows, not

because it’s trying to send message

• Hosts probe network to test level of congestion
• Speed up when no congestion (i.e., no packet drops)
• Slow down when when congestion (i.e., packet drops)

• How to do this efficiently?
• Extend TCP’s existing window-based protocol…
• Adapt the window size based in response to congestion

All These Windows…

• Flow control window: Advertised Window (RWND)
• How many bytes can be sent without overflowing receivers buffers
• Determined by the receiver and reported to the sender

• Congestion Window (CWND)
• How many bytes can be sent without overflowing routers
• Computed by the sender using congestion control algorithm

• Sender-side window = minimum{CWND,RWND}
• Assume for this lecture that RWND >> CWND

Note

• This lecture will talk about CWND in units of MSS
• Recall MSS: Maximum Segment Size, the amount of payload data

in a TCP packet
• This is only for pedagogical purposes

• Keep in mind that real implementations maintain CWND in bytes

Basics of TCP Congestion

• Congestion Window (CWND)
• Maximum # of unacknowledged bytes to have in flight
• Rate ~CWND/RTT

• Adapting the congestion window
• Increase upon lack of congestion: optimistic exploration
• Decrease upon detecting congestion

• But how do you detect congestion?

Not All Losses the Same

• Duplicate ACKs: isolated loss

• Still getting ACKs

• Timeout: possible disaster

• Not enough duplicate ACKs
• Must have suffered several losses

How to Adjust CWND?

• Consequences of over-sized window much worse than having an under-
sized window

• Over-sized window: packets dropped and retransmitted
• Under-sized window: somewhat lower throughput

• Approach
• Gentle increase when un-congested (exploration)
• Rapid decrease when congested

Additive Increase, Multiplicative Decrease (AIMD)

• Additive increase
• On success of last window of data, increase by one MSS
• If W packets in a row have been ACKed, increase W by one
• i.e., +1/W per ACK

• Multiplicative decrease
• On loss of packets by DupACKs, divide congestion window by half
• Special case: when timeout, reduce congestion window to one MSS

AIMD

• ACK: CWND -> CWND + 1/CWND
• When CWND is measured in MSS
• Note: after a full window, CWND increase by 1 MSS
• Thus, CWND increases by 1 MSS per RTT

• 3rd DupACK: CWND -> CWND/2

• Special case of timeout: CWND -> 1 MSS

Leads to the TCP Sawtooth

Loss

Halved

Window

t

Questions?

Slow Start

AIMD Starts Too Slowly

Window

tIt could take a long time to get
started!

Need to start with a small CWND to avoid overloading the network

Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth
• Start slow (for safety)
• But ramp up quickly (for efficiency)

• Consider
• RTT = 100ms, MSS=1000bytes
• Window size to fill 1Mbps of BW = 12.5 MSS
• Window size to fill 1 Gbps = 12,500 MSS

• With just AIMD, it takes about 12500 RTTs to get to this
window size!
• ~21 mins

“Slow Start” Phase

• Start with a small congestion window
• Initially, CWND is 1 MSS
• So, initial sending rate is MSS/RTT

• That could be pretty wasteful
• Might be much less than the actual bandwidth
• Linear increase takes a long time to accelerate

• Slow-start phase (actually “fast start”)
• Sender starts at a slow rate (hence the name)
• … but increases exponentially until first loss

Slow Start in Action

Src

Dst

1 2 3 4 8

Double CWND per round-trip time

Simple implementation: on each ACK, CWND += MSS

D A D AD A D
A

D
A

D
A

D
A

Slow Start and the TCP Sawtooth

Window

tExponential “slow start”

Why is it called slow-start? Because TCP originally had no congestion control
mechanism. The source would just start by sending a whole window’s worth of data.

Slow-Start vs AIMD

• When does a sender stop Slow-Start and start Additive Increase?

• Introduce a “slow start threshold” (ssthresh)
• Initialized to a large value
• On timeout, ssthresh = CWND/2

• When CWND > ssthresh, sender switches from slow-start to AIMD-style
increase

Timeouts

Loss Detected by Timeout

• Sender starts a timer that runs for RTO seconds

• Restart timer whenever ACK for new data arrives

• If timer expires
• Set SSHTHRESH <- CWND/2 (“Slow Start Threshold”)
• Set CWND <- 1 (MSS)
• Retransmit first lost packet
• Execute Slow Start until CWND > SSTHRESH
• After which switch to Additive Increase

Summary of Increase

• “Slow start”: increase CWND by 1 (MSS) for each ACK
• A factor of 2 per RTT

• Leave slow-start regime when either:
• CWND > SSTHRESH
• Packet drop detected by dupacks

• Enter AIMD regime
• Increase by 1 (MSS) for each window’s worth of ACKed data

Summary of Decrease

• Cut CWND half on loss detected by dupacks
• Fast retransmit to avoid overreacting

• Cut CWND all the way to 1 (MSS) on timeout

• Set ssthresh to CWND/2

• Never drop CWND below 1 (MSS)
• Our correctness condition: always try to make progress

TCP Congestion Control Details

Implementation

• State at sender
• CWND (initialized to a small constant)
• ssthresh (initialized to a large constant)
• dupACKcount
• Timer, as before

• Events at sender
• ACK (new data)
• dupACK (duplicate ACK for old data)
• Timeout

• What about receiver? Just send ACKs upon arrival

Event: ACK (new data)

• If in slow start
• CWND += 1 CWND packets per RTT

Hence after one RTT with
no drops:

CWND = 2 x CWND

Event: ACK (new data)

• If CWND <= ssthresh
• CWND += 1

• Else
• CWND = CWND + 1/CWND

CWND packets per RTT
Hence after one RTT with

no drops:
CWND = CWND + 1

Slow Start Phase

Congestion Avoidance Phase
(additive increase)

Event: Timeout

• On Timeout
• ssthresh <- CWND/2
• CWND <- 1

Event: dupACK

• dupACKcount++

• If dupACKcount = 3 /* fast retransmit */
• ssthresh <- CWND/2
• CWND <- CWND/2

Remains in congestion
avoidance after fast

retransmission

Time Diagram

Window

t
Slow start in operation until it

reached half of previous CWND,
i.e., SSThresh

Slow-start restart: Go back to CWND of 1 MSS, but take
advantage of knowing the previous value of CWND.

Fast Retransmission Timeout SSThresh
Set to here

TCP Flavors

• TCP Tahoe
• CWND = 1 on triple dupACK

• TCP Reno
• CWND = 1 on timeout
• CWND = CWND/2 on triple dupACK

• TCP-newReno
• TCP-Reno + improved fast recovery

• TCP-SACK
• Incorporates selective acknowledgements

Our default assumption

TCP and fairness guarantees

Consider A Simple Model

• Flows ask for an amount of bandwidth ri

• In reality, this request is implicit (the amount they send)

• The link gives them an amount ai

• Again, this is implicit (by how much is forwarded)
• ai <= ri

• There is some total capacity C
• Sum ai <= C

Fairness

• When all flows want the same rate, fair is easy
• Fair share = C/N
• C = capacity of link
• N = number of flows

• Note:
• This is fair share per link. This is not a global fair share

• When not all flows have the same demand?
• What happens here?

Example 1

• Requests: ri Allocations: ai

• C = 20
• Requests: r1 = 6, r2 = 5, r3 = 4

• Solution
• a1 = 6, a2 = 5, a3 = 4

• When bandwidth is plentiful, everyone gets their request

• This is the easy case

Example 2

• Requests: ri Allocations: ai

• C = 12
• Requests: r1 = 6, r2 = 5, r3 = 4

• One solution
• a1 = 4, a2 = 4, a3 = 4
• Everyone gets the same

• Why not proportional to their demands?
• ai = (12/15) ri

• Asking for more gets you more!
• Not incentive compatible (i.e., cheating works!)
• You can’t have that and invite innovation!

Example 3

• Requests: ri Allocations: ai

• C = 14
• Requests: r1 = 6, r2 = 5, r3 = 4

• a3 = 4 (can’t give more than a flow wants)

• Remaining bandwidth is 10, with demands 6 and 5
• From previous example, if both want more than their share, they

both get half
• a1 = a2 = 5

Max-Min Fairness

• Given a set of bandwidth demands ri and total bandwidth C, max-min
bandwidth allocations are ai = min (f,ri)

• Where f is the unique value such that Sum(ai) = C or set f to be
infinite if no such value exists

• This is what round-robin service gives

• If all packets are MTU

• Property:
• If you don't get full demand, no one gets more than you

Computing Max-Min Fairness

• Assume demands are in increasing order…

• If C/N <= r1, then ai = C/N for all i

• Else, a1 = r1, set C = C - a1 and N = N-1

• Repeat

• Intuition: all flows requesting less than fair share get their request.
Remaining flows divide equally

Example

• Assume link speed C is 10Mbps

• Have three flows:
• Flow 1 is sending at a rate 8 Mbps
• Flow 2 is sending at a rate 6 Mbps
• Flow 3 is sending at a rate 2 Mbps

• How much bandwidth should each get?
• According to max-min fairness?

• Work this out, talk to your neighbors

Example

• Requests: ri Allocations: ai

• Requests: r1 = 8, r2 = 6, r3 = 2

• C = 10, N = 3, C/N = 3.33
• Can serve all for r3
• Remove r3 from the accounting: C = C - r3 = 8, N = 2

• C/2 = 4
• Can’t service all for r1 or r2
• So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

Max-Min Fairness

• Max-min fairness the natural per-link fairness

• Only one that is
• Symmetric
• Incentive compatible (asking for more doesn’t help)

Reality of Congestion Control

Conges1on control is a resource alloca1on problem involving

many flows, many links and complicated global dynamics

1 Gbps

600 Mbps
2 Gbps

Classical result:

In a stable state

(no dynamics; all flows are infinitely long; no failures; etc.)

TCP guarantees max-min fairness

