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Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections 

• Segments, Sequence numbers, ACKs  
• TCP uses byte sequence numbers to identify payloads 
• ACKs referred to sequence numbers  
• Window sizes expressed in terms of # of bytes 

• Retransmissions 

• Can’t be correct without retransmitting lost/corrupted data 
• TCP retransmits based on timeouts and duplicate ACKs 

• Timeouts based on estimate of RTT 

• Flow Control: Ensures the sender does not overwhelm the receiver 

• Congestion Control: Dynamic adaptation to network path’s capacity



TCP Congestion Control



TCP congestion control: high-level idea

• End hosts adjust sending rate  

• Based on implicit feedback from the network 
• Implicit: router drops packets because its buffer overflows, not 

because it’s trying to send message 

• Hosts probe network to test level of congestion  
• Speed up when no congestion (i.e., no packet drops) 
• Slow down when when congestion (i.e., packet drops) 

• How to do this efficiently? 
• Extend TCP’s existing window-based protocol… 
• Adapt the window size based in response to congestion



All These Windows…

• Flow control window: Advertised Window (RWND) 
• How many bytes can be sent without overflowing receivers buffers 
• Determined by the receiver and reported to the sender 

• Congestion Window (CWND) 
• How many bytes can be sent without overflowing routers 
• Computed by the sender using congestion control algorithm 

• Sender-side window = minimum{CWND,RWND} 
• Assume for this lecture that RWND >> CWND



Note

• This lecture will talk about CWND in units of MSS 
• Recall MSS: Maximum Segment Size, the amount of payload data 

in a TCP packet 
• This is only for pedagogical purposes 

• Keep in mind that real implementations maintain CWND in bytes



Basics of TCP Congestion

• Congestion Window (CWND) 
• Maximum # of unacknowledged bytes to have in flight 
• Rate ~CWND/RTT 

• Adapting the congestion window  
• Increase upon lack of congestion: optimistic exploration 
• Decrease upon detecting congestion 

• But how do you detect congestion?



Not All Losses the Same

• Duplicate ACKs: isolated loss 

• Still getting ACKs 

• Timeout: possible disaster 

• Not enough duplicate ACKs 
• Must have suffered several losses



How to Adjust CWND?

• Consequences of over-sized window much worse than having an under-
sized window 

• Over-sized window: packets dropped and retransmitted 
• Under-sized window: somewhat lower throughput 

• Approach 
• Gentle increase when un-congested (exploration) 
• Rapid decrease when congested



Additive Increase, Multiplicative Decrease (AIMD)

• Additive increase 
• On success of last window of data, increase by one MSS 
• If W packets in a row have been ACKed, increase W by one 
• i.e., +1/W per ACK 

• Multiplicative decrease 
• On loss of packets by DupACKs, divide congestion window by half 
• Special case: when timeout, reduce congestion window to one MSS



AIMD

• ACK: CWND -> CWND + 1/CWND 
• When CWND is measured in MSS 
• Note: after a full window, CWND increase by 1 MSS 
• Thus, CWND increases by 1 MSS per RTT 

• 3rd DupACK: CWND -> CWND/2 

• Special case of timeout: CWND -> 1 MSS



Leads to the TCP Sawtooth

Loss

Halved

Window

t



Questions?



Slow Start



AIMD Starts Too Slowly

Window

tIt  could take a long time to get 
started!

Need to start with a small CWND to avoid overloading the network



Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth 
• Start slow (for safety) 
• But ramp up quickly (for efficiency) 

• Consider 
• RTT = 100ms, MSS=1000bytes 
• Window size to fill 1Mbps of BW = 12.5 MSS 
• Window size to fill 1 Gbps = 12,500 MSS 

• With just AIMD, it takes about 12500 RTTs to get to this 
window size! 
• ~21 mins



“Slow Start” Phase

• Start with a small congestion window 
• Initially, CWND is 1 MSS 
• So, initial sending rate is MSS/RTT 

• That could be pretty wasteful 
• Might be much less than the actual bandwidth 
• Linear increase takes a long time to accelerate 

• Slow-start phase (actually “fast start”) 
• Sender starts at a slow rate (hence the name) 
• … but increases exponentially until first loss



Slow Start in Action
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Slow Start and the TCP Sawtooth

Window

tExponential “slow start”

Why is it called slow-start? Because TCP originally had no congestion control 
mechanism. The source would just start by sending a whole window’s worth of data.



Slow-Start vs AIMD

• When does a sender stop Slow-Start and start Additive Increase? 

• Introduce a “slow start threshold” (ssthresh) 
• Initialized to a large value 
• On timeout, ssthresh = CWND/2 

• When CWND > ssthresh, sender switches from slow-start to AIMD-style 
increase



Timeouts



Loss Detected by Timeout

• Sender starts a timer that runs for RTO seconds 

• Restart timer whenever ACK for new data arrives 

• If timer expires 
• Set SSHTHRESH <- CWND/2 (“Slow Start Threshold”) 
• Set CWND <- 1 (MSS) 
• Retransmit first lost packet 
• Execute Slow Start until CWND > SSTHRESH 
• After which switch to Additive Increase



Summary of Increase

• “Slow start”: increase CWND by 1 (MSS) for each ACK 
• A factor of 2 per RTT 

• Leave slow-start regime when either: 
• CWND > SSTHRESH 
• Packet drop detected by dupacks 

• Enter AIMD regime 
• Increase by 1 (MSS) for each window’s worth of ACKed data



Summary of Decrease

• Cut CWND half on loss detected by dupacks 
• Fast retransmit to avoid overreacting 

• Cut CWND all the way to 1 (MSS) on timeout 

• Set ssthresh to CWND/2 

• Never drop CWND below 1 (MSS) 
• Our correctness condition: always try to make progress



TCP Congestion Control Details



Implementation

• State at sender 
• CWND (initialized to a small constant) 
• ssthresh (initialized to a large constant) 
• dupACKcount 
• Timer, as before 

• Events at sender 
• ACK (new data) 
• dupACK (duplicate ACK for old data) 
• Timeout 

• What about receiver? Just send ACKs upon arrival



Event: ACK (new data)

• If in slow start 
• CWND += 1 CWND packets per RTT

Hence after one RTT with 
no drops:

CWND = 2 x CWND



Event: ACK (new data)

• If CWND <= ssthresh 
• CWND += 1 

• Else 
• CWND = CWND + 1/CWND

CWND packets per RTT
Hence after one RTT with 

no drops:
CWND = CWND + 1

Slow Start Phase

Congestion Avoidance Phase
(additive increase)



Event: Timeout

• On Timeout 
• ssthresh <- CWND/2 
• CWND <- 1



Event: dupACK

• dupACKcount++ 

• If dupACKcount = 3 /* fast retransmit */ 
• ssthresh <- CWND/2 
• CWND <- CWND/2

Remains in congestion 
avoidance after fast 

retransmission



Time Diagram

Window

t
Slow start in operation until it 

reached half of previous CWND, 
i.e., SSThresh

Slow-start restart: Go back to CWND of 1 MSS, but take 
advantage of knowing the previous value of CWND.

Fast Retransmission Timeout SSThresh 
Set to here



TCP Flavors

• TCP Tahoe 
• CWND = 1 on triple dupACK 

• TCP Reno 
• CWND = 1 on timeout 
• CWND = CWND/2 on triple dupACK 

• TCP-newReno 
• TCP-Reno + improved fast recovery 

• TCP-SACK 
• Incorporates selective acknowledgements

Our default assumption



TCP and fairness guarantees



Consider A Simple Model

• Flows ask for an amount of bandwidth ri 

• In reality, this request is implicit (the amount they send) 

• The link gives them an amount ai  

• Again, this is implicit (by how much is forwarded) 
• ai <= ri  

• There is some total capacity C 
• Sum ai <= C



Fairness

• When all flows want the same rate, fair is easy 
• Fair share = C/N 
• C = capacity of link 
• N = number of flows 

• Note: 
• This is fair share per link. This is not a global fair share 

• When not all flows have the same demand? 
• What happens here?



Example 1

• Requests: ri          Allocations: ai 

• C = 20 
• Requests: r1 = 6, r2 = 5, r3 = 4 

• Solution 
• a1 = 6, a2 = 5, a3 = 4 

• When bandwidth is plentiful, everyone gets their request 

• This is the easy case



Example 2

• Requests: ri          Allocations: ai 

• C = 12 
• Requests: r1 = 6, r2 = 5, r3 = 4 

• One solution 
• a1 = 4, a2 = 4, a3 = 4 
• Everyone gets the same 

• Why not proportional to their demands? 
• ai = (12/15) ri 

• Asking for more gets you more! 
• Not incentive compatible (i.e., cheating works!) 
• You can’t have that and invite innovation!



Example 3

• Requests: ri          Allocations: ai 

• C = 14 
• Requests: r1 = 6, r2 = 5, r3 = 4 

• a3 = 4 (can’t give more than a flow wants) 

• Remaining bandwidth is 10, with demands 6 and 5 
• From previous example, if both want more than their share, they 

both get half 
• a1 =  a2 = 5



Max-Min Fairness

• Given a set of bandwidth demands ri and total bandwidth C, max-min 
bandwidth allocations are ai = min (f,ri) 

• Where f is the unique value such that Sum(ai) = C or set f to be 
infinite if no such value exists 

• This is what round-robin service gives 

• If all packets are MTU 

• Property: 
• If you don't get full demand, no one gets more than you



Computing Max-Min Fairness

• Assume demands are in increasing order… 

• If C/N <= r1, then ai = C/N for all i 

• Else, a1 = r1, set C = C - a1 and N = N-1 

• Repeat 

• Intuition: all flows requesting less than fair share get their request. 
Remaining flows divide equally



Example

• Assume link speed C is 10Mbps 

• Have three flows: 
• Flow 1 is sending at a rate 8 Mbps 
• Flow 2 is sending at a rate 6 Mbps 
• Flow 3 is sending at a rate 2 Mbps 

• How much bandwidth should each get? 
• According to max-min fairness? 

• Work this out, talk to your neighbors



Example

• Requests: ri          Allocations: ai 

• Requests: r1 = 8, r2 = 6, r3 = 2 

• C = 10, N = 3, C/N = 3.33 
• Can serve all for r3 
• Remove r3 from the accounting: C = C - r3 = 8, N = 2 

• C/2 = 4 
• Can’t service all for r1 or r2 
• So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:  
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10



Max-Min Fairness

• Max-min fairness the natural per-link fairness 

• Only one that is 
• Symmetric 
• Incentive compatible (asking for more doesn’t help)



Reality of Congestion Control

Conges1on control is a resource alloca1on problem involving 

many flows, many links and complicated global dynamics

1 Gbps

600 Mbps
2 Gbps



Classical result: 

In a stable state  

(no dynamics; all flows are infinitely long; no failures; etc.)  

TCP guarantees max-min fairness


