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Goal of Today’s Lecture

• Continue our understanding of reliable transport conceptually 

• Understanding TCP will become infinitely easier 
• TCP involves lots of detailed mechanisms 
• Knowing WHY TCP uses these mechanisms is most important
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Lets start with recapping last lecture



Recap: Best Effort Service (L3)

• Packets can be lost 
• Packets can be corrupted 
• Packets can be reordered 
• Packets can be delayed 
• Packets can be duplicated 
• …

Transport layer:  
Enabling reliability over such a best-effort service model
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Recap: Complete Correctness Condition for reliability

A transport mechanism is “reliable” if and only if  

(a) It resends all dropped or corrupted packets 

(b) It attempts to make progress
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Recap: Four Goals for Reliable Transfer

• Correctness 

• As defined in the last slide 

• “Fairness” 

• Every flow must get a fair share of network resources  

• Flow Performance (Latency-related) 

• Latency, jitter, etc. 

• Utilization (Throughput-related) 

• Would like to maximize bandwidth utilization 
• If network has bandwidth available, flows should be able to use it!

6



Recap: Solution v1

• Send every packet as often and fast as possible… 

• Not correct 
• if condition not satisfied: Transport must attempt to make progress 
• No way to check whether the packet was dropped or corrupted 

• So, must continue sending the same packet 

• What did we learn from this incorrect solution? 

• why we need receiver feedback
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Recap: Solution v2

• Resend packet until you get an ACK 

• And receiver sends per-packet ACKs until data finally stops  

• Correct, fair, good (but suboptimal) latency, suboptimal utilization 
• A specific kind of under-utilization: 

• The source is unnecessarily sending the same packet 

• What did we learn from this solution? 

• why we must wait for an ACK after sending a packet 
• But how long shall we wait for an ACK? 
• Indeed, the ACK may be lost as well
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Recap: Solution v3

• Send packet 
• But now, set a timer 

• receiver sends per-packet ACKs 
• If sender receives ACK, done 
• If no ACK when timer expires, resend 

• Correct, fair, good (but suboptimal latency and utilization) 
• A different kind of under-utilization  

• source is not “work conserving”: could send, but is not 

• What did we learn from this solution? 

• We should not be just waiting; sender-side bandwidth wasted 
• Keep more than one packet “in flight” 
• How many?
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Recap: Window-based Algorithms

• Very simple concept 
• Send W packets 
• When one gets ACK’ed send the next packet in line  

• We want to set W such that: 

• if I am sending at rate = link bandwidth, then 
• the ACK of the first packet arrives 
• exactly when I just finish sending the last of my W packets 
• (assuming same transmission time for data and ACK packets) 

• Lets me send as fast as the path can deliver…
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RTT x B ~ W x Packet Size

• Recall that Bandwidth Delay Product 
• BDP = bandwidth x propagation delay 

• B x RTT is merely 2x BDP 

• Window sizing rule:  
• Total bits in flight is roughly the amount of data that fits into 

forward and reverse “pipes” 
• Here pipe is complete path, not single link… 
• This is not “detail”, this is a fundamental concept…

bandwidth

Propagation delay

delay x bandwidth
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Where Are We?

• Figured out correctness condition: 

• Always resend lost/corrupted packets 
• Always try to make progress (but can give up entirely) 

• Figured out single packet case: 

• Send packet, set timer, resend if no ACK when timer expires 

• Some progress towards multiple packet case: 

• Allow many packets (W) in flight at once 
• And know what the ideal window size is 

• RTT x B / Packet size 

• What’s left to design?
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Questions?



Three Design Considerations

• Nature of feedback 
• What should ACKs tell us when we have many packets in flight 

• Detection of loss 

• Response to loss
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ACK Individual Packets

The receiver sends ACK for each individual packet that it receives
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Example: 

• Assume that packet 5 is lost, but no others  

• Stream of ACKs will be 
• 1 
• 2 
• 3 
• 4 
• 6 

• 7 

• 8 

• …



ACK Individual Packets

• Nature of feedback: simple - the receiver ACKs each packet 

• Loss detection: simple - ACKs tell the fate of each packet to the source 

• Response to loss: moderate: 
• + Retransmit the packet for which ACK not received 
• + Reordering not a problem 
• + Simple window algorithm 

• W independent single packet algorithms 
• When one finishes grab next packet 

• - Loss of ACK packet requires a retransmission
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Full Information Feedback

• List all packets that have been received 

• Give highest cumulative ACK plus any additional packets
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Same Example (suppose packet 5 gets lost): 

• Same story, except that the “hole” is explicit in each ACK 

• Stream of ACKs will be 
• Up to 1 
• Up to 2 
• Up to 3 
• Up to 4 
• Up to 4, plus 6 
• Up to 4, plus 6,7 
• Up to 4, plus 6,7,8 
• …



• Nature of feedback: complex - feedback may have high overheads 
• If packets 1, 5, 6, …., 100 received: ACK(1, 5, 6, …,100) 

• Loss detection: simple - the source still knows fate of each packet 

• Response to loss: simple: 
• + Retransmit the packet for which ACK not received 
• + Reordering not a problem 
• + Simple window algorithm 
• + Loss of ACK does not necessarily requires a retransmission 

• The next ACK will tell that the packet was indeed received 

• Resilient form of individual ACKs
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Full Information Feedback



Cumulative ACK

• Individual ACKs can get lost, and require unnecessary retransmission 

• Full information feedback can handle lost ACKs but has high overheads 

• Cumulative ACKs: a sweet spot between the two 

• Just the first part of full information feedback 

• ACK the highest sequence number for all previously received packets
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Cumulative ACKs (same example; say packet 5 lost)
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Full information feedback: 

• Stream of ACKs will be 
• Up to 1 
• Up to 2 
• Up to 3 
• Up to 4 
• Up to 4, plus 6 
• Up to 4, plus 6,7 
• Up to 4, plus 6,7,8 
• …

Cumulative ACKs: 

• Stream of ACKs will be 
• Up to 1 
• Up to 2 
• Up to 3 
• Up to 4 
• Up to 4 
• Up to 4 
• Up to 4 
• …

Tells “some” packet arrived, and 
which packet did not

Tells “which” packet arrived, and 
which packet did not



Loss With Cumulative ACKs (cont’d)

• Duplicate ACKs are a sign of loss 
• The lack of ACK progress means 5 hasn’t been delivered  
• Stream of duplicate ACKs means some packets are being delivered 

(one for each subsequent packet) 

• Response to loss is trickier… When shall the source retransmit packet 5? 
• Packet may be delayed (so, source should wait) 
• Packet may be reordered (so, source should wait) 
• Or, packet may be dropped (source should immediately retransmit) 
• Impossible to know which one is the case 

• Life lesson: be optimistic! 
• Until optimism starts hurting 

• Solution: retransmit after k duplicate ACKs  

• for some value of k, depending on how optimistic you feel!
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Cumulative ACKs (how is reordering handled; large k)
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Receiver events: 

• Packet 1 received 
• Packet 2 received 
• Packet 3 received 
• Packet 4 received 
• Packet 6 received 

• Packet 7 received 
• Packet 5 received 

• Packet 8 received 

• …

Cumulative ACKs: 

• Up to 1 
• Up to 2 
• Up to 3 
• Up to 4 
• Up to 4 

• Up to 4 
• Up to 7 

• Up to 8 

• …

Cumulative ACKs naturally handle packet reordering 
(Packet delays are similar to reordering)



• Produce duplicate ACKs  
• Could be confused for loss with cumulative ACKs 
• But duplication is rare…
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Receiver events: 

• Packet 1 received 
• Packet 2 received 
• Packet 4 received 

• Packet 5 received 
• Packet 6 received 
• Packet 3 received 

• Packet 3 received 

• Packet 7 received 
• …

Cumulative ACKs: 

• Up to 1 
• Up to 2 
• Up to 2 

• Up to 2 

• Up to 2 

• Up to 6 
• Up to 6 

• Up to 7 

• …

Source events: 

• Packet 1 sent 
• Packet 2 sent 
• Packet 3 sent 
• Packet 4 sent 
• Packet 5 sent 
• Packet 6 sent 
• Packet 3 resent 

• Packet 7 sent 
• …

Cumulative ACKs (confusion with duplication)



Possible Design For Reliable Transport 

• Cumulative ACKs 

• Window based, with retransmissions after  
• Timeout  
• k subsequent ACKs 

• This is correct, high-performant and high-utilization 
• At least as much as we can efficiently 

• How about fairness?

24



Fairness? (Come back to later)

• The question of fairness comes up when: 
• Senders want to send data at rate higher than bandwidth 
• There will be packet loss! 

• Adjust W based on losses… 

• In a way that flows receive same shares 

• Short version: 
• Loss: cut W by 2 
• Successful receipt of window: W increased by 1
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Overview of Reliable Transport

• Window based self control separate concerns  
• Size of W 
• Nature of feedback 
• Response to loss 

• Can design each aspect relatively independently  

• Can be correct, fair, high-performant and high-utilization 

• All of these are important concerns 
• But correctness is most fundamental 

• Design must start with correctness  
• Can then “engineer” its performance with various hacks  
• These hacks can be “fun”, but don’t let them distract you
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What Have We Done so far?

• Started from first principles 
• Correctness condition for reliable transport 

• … to understanding why feedback from receiver is necessary (sol-v1) 

• … to understanding why timers may be needed (sol-v2) 

• … to understanding why window-based design may be needed (sol-v3) 

• … to understanding why cumulative ACKs may be a good idea 
• Very close to modern TCP 

• You are now ready to learn TCP
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Lets learn TCP



Transport layer

• Transport layer offer a “pipe” abstraction to applications 

• Data goes in one end of the pipe and emerges from other 

• Pipes are between processes, not hosts 

• There are two basic pipe abstractions



Two Pipe Abstractions

• Unreliable packet delivery (UDP) 
• Unreliable (application responsible for resending) 
• Messages limited to single packet 

• Reliable byte stream delivery 
• Bytes inserted into pipe by sender 
• They emerge, in order at receiver (to the app) 

• What features must transport protocol implement to support these 
abstractions? 



UDP (Datagram Messaging Service)

• Sources send packets 

• Destinations do nothing, but receive packets 

• If packets delayed/reordered/lost:  
• Meh!  
• Let application handle packet loss (or be oblivious to drops) 
• If application needs reliable delivery, it must use reliable transport 

• Discarding corrupted packets (optional) 

• Nothing else! 

• A minimal extension of IP



Transmission Control Protocol (TCP)

• Full duplex stream of byte service 
• Sends and receives stream of bytes (segments), not messages 

• Reliable, in-order delivery 

• Ensures byte stream (eventually) arrives intact 
• In the presence of corruption, delays, reordering, loss



From design to implementation: major notation change

• Previously we focused on packets 
• Packets had numbers 
• ACKs referred to those numbers  
• Window sizes expressed in terms of # of packets 

• TCP focuses on bytes, thus 
• Packets identified by the bytes they carry 
• ACKs refer to the bytes received 
• Window size expressed in terms of # of bytes



Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections 

• Segments, Sequence numbers, ACKs  
• TCP uses byte sequence numbers to identify payloads 
• ACKs referred to sequence numbers  
• Window sizes expressed in terms of # of bytes 

• Retransmissions 

• Can’t be correct without retransmitting lost/corrupted data 
• TCP retransmits based on timeouts and duplicate ACKs 

• Timeouts based on estimate of RTT 

• Flow Control: Ensures the sender does not overwhelm the receiver 

• Congestion Control: Dynamic adaptation to network path’s capacity



Connection/Session



Connections (Or Sessions)

• Reliability requires keeping state 
• Sender: packets sent but not yet ACKed, and related timers 
• Receiver: packets that arrived out-of-order 

• Each byte stream is called a connection or session 
• Each with their own connection state 
• State is in hosts, not network



Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections 

• Segments, Sequence numbers, ACKs  
• TCP uses byte sequence numbers to identify payloads 
• ACKs referred to sequence numbers  
• Window sizes expressed in terms of # of bytes 

• Retransmissions 

• Can’t be correct without retransmitting lost/corrupted data 
• TCP retransmits based on timeouts and duplicate ACKs 

• Timeouts based on estimate of RTT 

• Flow Control: Ensures the sender does not overwhelm the receiver 

• Congestion Control: Dynamic adaptation to network path’s capacity



Segments and Sequence Numbers



TCP “Stream of Bytes” Service

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Application @ Host A

Application @ Host B



TCP “Stream of Bytes” Service

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Application @ Host A

Application @ Host B

TCP Data

TCP Data

Segment sent when 
1) Segment full (Max Segment Size)
2) Not full, but times out



Establishing a TCP Connection

• Three-way handshake to establish connection 
• Host A sends a SYN (open; “synchronize sequence numbers”) to host B 
• Host B returns a SYN acknowledgement (SYN ACK) 
• Host sends an ACK to acknowledge the SYN ACK

SYN

ACK

Data
Data

SYN + ACK

A B

Each host tells its ISN to 
the other host.



Initial Sequence Number (ISN)

• Sequence number for the very first byte 
• E.g., Why not just use ISN = 0? 

• Practical issue 
• IP addresses and port #s uniquely identify a connection 
• Eventually, though, these port #s do get used again 

• … small chance an old packet is still in flight 

• TCP therefore requires changing ISN 
• Set from 32-bit clock that ticks every 4 microseconds 
• … only wraps around once every 4.55 hours 

• To establish a connection, hosts exchange ISNs 
• How does this help?



Sequence Numbers

Host A

K bytes

Sequence number        
= 1st byte in segment   

= ISN + k

Initial Sequence Number (ISN)

TCP Data
TCP 
Hdr

Host B

TCP Data
TCP 
Hdr

ACK Sequence number        
= next expected byte    

= seqno + length(data)



ACKing and Sequence Numbers

• Sender sends segments (byte stream) 
• Data starts with sequence number X 
• Packet contains B bytes 

• X, X+1, X+2, …, X+B-1 

• Upon receipt of a segment, receiver sends an ACK 
• If all data prior to X already received: 

• ACK acknowledges X+B (because that is next expected byte) 
• If highest contiguous byte received is smaller value Y 

• ACK acknowledges Y+1 
• Even if this has been ACKed before



Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections 

• Segments, Sequence numbers, ACKs  
• TCP uses byte sequence numbers to identify payloads 
• ACKs referred to sequence numbers  
• Window sizes expressed in terms of # of bytes 

• Retransmissions 

• Can’t be correct without retransmitting lost/corrupted data 
• TCP retransmits based on timeouts and duplicate ACKs 

• Timeouts based on estimate of RTT 

• Flow Control: Ensures the sender does not overwhelm the receiver 

• Congestion Control: Dynamic adaptation to network path’s capacity



TCP Retransmission



Two Mechanisms for Retransmissions

• Duplicate ACKs 

• Timeouts



Loss with Cumulative ACKs

• Sender sends packets with 100B and seqnos 
• 100, 200, 300, 400, 500, 600, 700, 800, 900 

• Assume 5th packet (seqno 500) is lost, but no others 

• Stream of ACKs will be 
• 200, 300, 400, 500, 500, 500, 500, 500



Loss with Cumulative ACKs

• Duplicate ACKs are a sign of an isolated loss 
• The lack of ACK progress means 500 hasn’t been delivered 
• Stream of ACKs means some packets are being delivered 

• Therefore, could trigger resend upon receiving k duplicate ACKs  
• TCP uses k = 3 

• We will revisit this in congestion control



Timeouts and Retransmissions

• Reliability requires retransmitting lost data 

• Involves setting timers and retransmitting on timeouts 

• TCP only has a single timer 

• TCP resets timer whenever new data is ACKed 

• Retransmit packet containing “next byte” when timer expires 

• RTO (Retransmit Time Out) is the basic timeout value



RTT

Setting the Timeout Value (RTO)

1

1

Timeout

Timeout too long -> inefficient

RTT

1

1
Timeout

Timeout too short -> duplicate packets



Setting RTO value

• Many ideas 
• See backup slides for some examples (not needed for exams) 

• Implementations often use a coarser-grained timer 
• 500 msec is typical 

• Incurring a timeout is expensive 

• So we rely on duplicate ACKs



Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections 

• Segments, Sequence numbers, ACKs  
• TCP uses byte sequence numbers to identify payloads 
• ACKs referred to sequence numbers  
• Window sizes expressed in terms of # of bytes 

• Retransmissions 

• Can’t be correct without retransmitting lost/corrupted data 
• TCP retransmits based on timeouts and duplicate ACKs 

• Timeouts based on estimate of RTT 

• Flow Control: Ensures the sender does not overwhelm the receiver 

• Congestion Control: Dynamic adaptation to network path’s capacity



TCP Flow Control



Flow Control (Sliding Window)

• Advertised Window: W 
• Can send W bytes beyond the next expected byte 

• Receiver uses W to prevent sender from overflowing buffer 

• Limits number of bytes sender can have in flight



Filling the Pipe

• Simple example: 
• W (in bytes), which we assume is constant 
• RTT (in sec), which we assume is constant 
• B (in bytes/sec) 

• How fast will data be transferred? 

• If W/RTT < B, the transfer has speed W/RTT 
• If W/RTT > B, the transfer has speed B



Advertised Window Limits Rate

• Sender can send no faster than W/RTT bytes/sec 

• In original TCP, that was the sole protocol mechanism controlling 
sender’s rate 

• What’s missing? 

• Congestion control about how to adjust W to avoid network congestion



Implementing Sliding Window

• Sender maintains a window 
• Data that has been sent out but not yet ACK’ed 

• Left edge of window: 
• Beginning of unacknowledged data 
• Moves when data is ACKed 

• Window size = maximum amount of data in flight 

• Receiver sets this amount, based on its available buffer space 
• If it has not yet sent data up to the app, this might be small



Advertised Window Limits Rate

• Sender can send no faster than W/RTT bytes/sec 

• In original TCP, that was the sole protocol mechanism controlling 
sender’s rate 

• What’s missing? 

• Congestion control about how to adjust W to avoid network congestion



Basic Components of TCP

• Connections: Explicit set-up and tear-down of TCP sessions/connections 

• Segments, Sequence numbers, ACKs  
• TCP uses byte sequence numbers to identify payloads 
• ACKs referred to sequence numbers  
• Window sizes expressed in terms of # of bytes 

• Retransmissions 

• Can’t be correct without retransmitting lost/corrupted data 
• TCP retransmits based on timeouts and duplicate ACKs 

• Timeouts based on estimate of RTT 

• Flow Control: Ensures the sender does not overwhelm the receiver 

• Congestion Control: Dynamic adaptation to network path’s capacity



TCP Congestion Control



TCP congestion control: high-level idea

• End hosts adjust sending rate  

• Based on implicit feedback from the network 
• Implicit: router drops packets because its buffer overflows, not 

because it’s trying to send message 

• Hosts probe network to test level of congestion  
• Speed up when no congestion (i.e., no packet drops) 
• Slow down when when congestion (i.e., packet drops) 

• How to do this efficiently? 
• Extend TCP’s existing window-based protocol… 
• Adapt the window size based in response to congestion



All These Windows…

• Flow control window: Advertised Window (RWND) 
• How many bytes can be sent without overflowing receivers buffers 
• Determined by the receiver and reported to the sender 

• Congestion Window (CWND) 
• How many bytes can be sent without overflowing routers 
• Computed by the sender using congestion control algorithm 

• Sender-side window = minimum{CWND,RWND} 
• Assume for this lecture that RWND >> CWND



Note

• This lecture will talk about CWND in units of MSS 
• Recall MSS: Maximum Segment Size, the amount of payload data 

in a TCP packet 
• This is only for pedagogical purposes 

• Keep in mind that real implementations maintain CWND in bytes



Basics of TCP Congestion

• Congestion Window (CWND) 
• Maximum # of unacknowledged bytes to have in flight 
• Rate ~CWND/RTT 

• Adapting the congestion window  
• Increase upon lack of congestion: optimistic exploration 
• Decrease upon detecting congestion 

• But how do you detect congestion?



Not All Losses the Same

• Duplicate ACKs: isolated loss 

• Still getting ACKs 

• Timeout: possible disaster 

• Not enough duplicate ACKs 
• Must have suffered several losses



How to Adjust CWND?

• Consequences of over-sized window much worse than having an under-
sized window 

• Over-sized window: packets dropped and retransmitted 
• Under-sized window: somewhat lower throughput 

• Approach 
• Gentle increase when un-congested (exploration) 
• Rapid decrease when congested



Additive Increase, Multiplicative Decrease (AIMD)

• Additive increase 
• On success of last window of data, increase by one MSS 
• If W packets in a row have been ACKed, increase W by one 
• i.e., +1/W per ACK 

• Multiplicative decrease 
• On loss of packets by DupACKs, divide congestion window by half 
• Special case: when timeout, reduce congestion window to one MSS



AIMD

• ACK: CWND -> CWND + 1/CWND 
• When CWND is measured in MSS 
• Note: after a full window, CWND increase by 1 MSS 
• Thus, CWND increases by 1 MSS per RTT 

• 3rd DupACK: CWND -> CWND/2 

• Special case of timeout: CWND -> 1 MSS



Leads to the TCP Sawtooth

Loss

Halved

Window

t



Questions?



Slow Start



AIMD Starts Too Slowly

Window

tIt  could take a long time to get 
started!

Need to start with a small CWND to avoid overloading the network



Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth 
• Start slow (for safety) 
• But ramp up quickly (for efficiency) 

• Consider 
• RTT = 100ms, MSS=1000bytes 
• Window size to fill 1Mbps of BW = 12.5 MSS 
• Window size to fill 1 Gbps = 12,500 MSS 

• With just AIMD, it takes about 12500 RTTs to get to this 
window size! 
• ~21 mins



“Slow Start” Phase

• Start with a small congestion window 
• Initially, CWND is 1 MSS 
• So, initial sending rate is MSS/RTT 

• That could be pretty wasteful 
• Might be much less than the actual bandwidth 
• Linear increase takes a long time to accelerate 

• Slow-start phase (actually “fast start”) 
• Sender starts at a slow rate (hence the name) 
• … but increases exponentially until first loss



Slow Start in Action

Src

Dst

1 2 3 4 8

Double CWND per round-trip time

Simple implementation: on each ACK, CWND += MSS

D A D AD A D
A

D
A

D
A

D
A



Slow Start and the TCP Sawtooth

Window

tExponential “slow start”

Why is it called slow-start? Because TCP originally had no congestion control 
mechanism. The source would just start by sending a whole window’s worth of data.



Slow-Start vs AIMD

• When does a sender stop Slow-Start and start Additive Increase? 

• Introduce a “slow start threshold” (ssthresh) 
• Initialized to a large value 
• On timeout, ssthresh = CWND/2 

• When CWND > ssthresh, sender switches from slow-start to AIMD-style 
increase



Timeouts



Loss Detected by Timeout

• Sender starts a timer that runs for RTO seconds 

• Restart timer whenever ACK for new data arrives 

• If timer expires 
• Set SSHTHRESH <- CWND/2 (“Slow Start Threshold”) 
• Set CWND <- 1 (MSS) 
• Retransmit first lost packet 
• Execute Slow Start until CWND > SSTHRESH 
• After which switch to Additive Increase



Summary of Increase

• “Slow start”: increase CWND by 1 (MSS) for each ACK 
• A factor of 2 per RTT 

• Leave slow-start regime when either: 
• CWND > SSTHRESH 
• Packet drop detected by dupacks 

• Enter AIMD regime 
• Increase by 1 (MSS) for each window’s worth of ACKed data



Summary of Decrease

• Cut CWND half on loss detected by dupacks 
• Fast retransmit to avoid overreacting 

• Cut CWND all the way to 1 (MSS) on timeout 

• Set ssthresh to CWND/2 

• Never drop CWND below 1 (MSS) 
• Our correctness condition: always try to make progress



TCP Congestion Control Details



Implementation

• State at sender 
• CWND (initialized to a small constant) 
• ssthresh (initialized to a large constant) 
• dupACKcount 
• Timer, as before 

• Events at sender 
• ACK (new data) 
• dupACK (duplicate ACK for old data) 
• Timeout 

• What about receiver? Just send ACKs upon arrival



Event: ACK (new data)

• If in slow start 
• CWND += 1 CWND packets per RTT

Hence after one RTT with 
no drops:

CWND = 2 x CWND



Event: ACK (new data)

• If CWND <= ssthresh 
• CWND += 1 

• Else 
• CWND = CWND + 1/CWND

CWND packets per RTT
Hence after one RTT with 

no drops:
CWND = CWND + 1

Slow Start Phase

Congestion Avoidance Phase
(additive increase)



Event: Timeout

• On Timeout 
• ssthresh <- CWND/2 
• CWND <- 1



Event: dupACK

• dupACKcount++ 

• If dupACKcount = 3 /* fast retransmit */ 
• ssthresh <- CWND/2 
• CWND <- CWND/2

Remains in congestion 
avoidance after fast 

retransmission



Time Diagram

Window

t
Slow start in operation until it 

reached half of previous CWND, 
i.e., SSThresh

Slow-start restart: Go back to CWND of 1 MSS, but take 
advantage of knowing the previous value of CWND.

Fast Retransmission Timeout SSThresh 
Set to here



TCP Flavors

• TCP Tahoe 
• CWND = 1 on triple dupACK 

• TCP Reno 
• CWND = 1 on timeout 
• CWND = CWND/2 on triple dupACK 

• TCP-newReno 
• TCP-Reno + improved fast recovery 

• TCP-SACK 
• Incorporates selective acknowledgements

Our default assumption



TCP and fairness guarantees



Consider A Simple Model

• Flows ask for an amount of bandwidth ri 

• In reality, this request is implicit (the amount they send) 

• The link gives them an amount ai  

• Again, this is implicit (by how much is forwarded) 
• ai <= ri  

• There is some total capacity C 
• Sum ai <= C



Fairness

• When all flows want the same rate, fair is easy 
• Fair share = C/N 
• C = capacity of link 
• N = number of flows 

• Note: 
• This is fair share per link. This is not a global fair share 

• When not all flows have the same demand? 
• What happens here?



Example 1

• Requests: ri          Allocations: ai 

• C = 20 
• Requests: r1 = 6, r2 = 5, r3 = 4 

• Solution 
• a1 = 6, a2 = 5, a3 = 4 

• When bandwidth is plentiful, everyone gets their request 

• This is the easy case



Example 2

• Requests: ri          Allocations: ai 

• C = 12 
• Requests: r1 = 6, r2 = 5, r3 = 4 

• One solution 
• a1 = 4, a2 = 4, a3 = 4 
• Everyone gets the same 

• Why not proportional to their demands? 
• ai = (12/15) ri 

• Asking for more gets you more! 
• Not incentive compatible (i.e., cheating works!) 
• You can’t have that and invite innovation!



Example 3

• Requests: ri          Allocations: ai 

• C = 14 
• Requests: r1 = 6, r2 = 5, r3 = 4 

• a3 = 4 (can’t give more than a flow wants) 

• Remaining bandwidth is 10, with demands 6 and 5 
• From previous example, if both want more than their share, they 

both get half 
• a1 =  a2 = 5



Max-Min Fairness

• Given a set of bandwidth demands ri and total bandwidth C, max-min 
bandwidth allocations are ai = min (f,ri) 

• Where f is the unique value such that Sum(ai) = C or set f to be 
infinite if no such value exists 

• This is what round-robin service gives 

• If all packets are MTU 

• Property: 
• If you don't get full demand, no one gets more than you



Computing Max-Min Fairness

• Assume demands are in increasing order… 

• If C/N <= r1, then ai = C/N for all i 

• Else, a1 = r1, set C = C - a1 and N = N-1 

• Repeat 

• Intuition: all flows requesting less than fair share get their request. 
Remaining flows divide equally



Example

• Assume link speed C is 10Mbps 

• Have three flows: 
• Flow 1 is sending at a rate 8 Mbps 
• Flow 2 is sending at a rate 6 Mbps 
• Flow 3 is sending at a rate 2 Mbps 

• How much bandwidth should each get? 
• According to max-min fairness? 

• Work this out, talk to your neighbors



Example

• Requests: ri          Allocations: ai 

• Requests: r1 = 8, r2 = 6, r3 = 2 

• C = 10, N = 3, C/N = 3.33 
• Can serve all for r3 
• Remove r3 from the accounting: C = C - r3 = 8, N = 2 

• C/2 = 4 
• Can’t service all for r1 or r2 
• So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:  
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10



Max-Min Fairness

• Max-min fairness the natural per-link fairness 

• Only one that is 
• Symmetric 
• Incentive compatible (asking for more doesn’t help)



Reality of Congestion Control

Congesjon control is a resource allocajon problem involving 
many flows, many links and complicated global dynamics

1 Gbps

600 Mbps
2 Gbps



Classical result: 

In a stable state  
(no dynamics; all flows are infinitely long; no failures; etc.)  

TCP guarantees max-min fairness



Any Questions?



The Many Failings of TCP Congestion Control

1. Fills up queues (large queueing delays) 
2. Every segment not ACKed is a loss (non-congestion related losses) 
3. Produces irregular saw-tooth behavior  
4. Biased against long RTTs (unfair) 
5. Not designed for short flows 
6. Easy to cheat



(1) TCP Fills Up Queues

• TCP only slows down when queues fill up 
• High queueing delays 

• Means that it is not optimized for latency 
• What is it optimized for then? 

• Answer: Fairness (discussion in next few slides) 

• And many packets are dropped when buffer fills 

• Alternative 1: Use small buffers  
• Is this a good idea? 
• Answer: No, bursty traffic will lead to reduced utilization 

• Alternative: Random Early Drop (RED) 
• Drop packets on purpose before queue is full 
• A very clever idea



Random Early Drop (or Detection)

• Measure average queue size A with exponential weighting 
• Average: Allows for short bursts of packets without over-reacting 

• Drop probability is a function of A 
• No drops if A is very small 
• Low drop rate for moderate A’s  
• Drop everything if A is too big 

• Drop probability applied to incoming packets 

• Intuition: link is fully utilized well before buffer is full



Advantages of RED

• Keeps queues smaller, while allowing bursts 
• Just using small buffers in routers can’t do the latter 

• Reduces synchronization between flows 
• Not all flows are dropping packets at once 
• Increases/decreases are more gentle 

• Problem 
• Turns out that RED does not guarantee fairness



(2) Non-Congestion-Related Losses?

• For instance, RED drops packets intentionally 
• TCP would think the network is congested 

• Can use Explicit Congestion Notification (ECN) 

• Bit in IP packet header (actually two) 
• TCP receiver returns this bit in ACK 

• When RED router would drop, it sets bit instead  
• Congestion semantics of bit exactly like that of drop 

• Advantages 
• Doesn’t confuse corruption with congestion



(3) Sawtooth Behavior Uneven

• TCP throughput is “choppy" 
• Repeated swings between W/2 to W 

• Some apps would prefer sending at a steady rate 
• E.g., streaming apps 

• A solution: “Equation-based congestion control” 
• Ditch TCP’s increase/decrease rules and just follow the equation: 
• [Matthew Mathis, 1997] TCP Throughput = MSS/RTT sqrt(3/2p) 

• Where p is drop rate 

• Measure drop percentage p and set rate accordingly 

• Following the TCP equation ensures we’re TCP friendly 
• I.e., use no more than TCP does in similar setting



Any Questions?



(4) Bias Against Long RTTs

• Flows get throughput inversely proportional to RTT 
• TCP unfair in the face of heterogeneous RTTs! 

• [Matthew Mathis, 1997] TCP Throughput = MSS/RTT sqrt(3/2p) 
• Where p is drop rate 

• Flows with long RTT will achieve lower throughput

A1 B1

A2 B2

100 ms

200 ms

Bottleneck Link



Possible Solutions

• Make additive constant proportional to RTT 

• But people don’t really care about this…



(5) How Short Flows Fare?

• Internet traffic: 
• Elephant and mice flows 
• Elephant flows carry most bytes (>95%), but are very few (<5%) 
• Mice flows carry very few bytes, but most flows are mice 

• 50% of flows have < 1500B to send (1 MTU);  
• 80% of flows have < 100KB to send 

• Problem with TCP? 
• Mice flows do not have enough packets for duplicate ACKs!! 
• Drop ~=~ Timeout (unnecessary high latency) 
• These are precisely the flows for which latency matters!!! 

• Another problem: 
• Starting with small window size leads to high latency



Possible Solutions?

• Larger initial window? 
• Google proposed moving from ~4KB to ~15KB 
• Covers ~90% of HTTP Web 
• Decreases delay by 5% 

• Many recent research papers on the timeout problem 
• Require network support



(6) Cheating

• TCP was designed assuming a cooperative world 

• No attempt was made to prevent cheating 

• Many ways to cheat, will present three



Cheating #1: ACK-splitting (receiver)

• TCP Rule: grow window by one MSS 
for each valid ACK received 

• Send M (distinct) ACKs for one MSS 

• Growth factor proportional to M

RTT

Data 1:1461

Data 1461:2921Data 2921:4381
Data 4381:5841
Data 5841:7301 

ACK 486

ACK 973

ACK 1461



Cheating #2: Increasing CWND Faster (source)

• TCP Rule: increase window by one MSS for each valid ACK received 

• Increase window by M per ACK 

• Growth factor proportional to M



Cheating #3: Open Many Connections (source/receiver)

• Assume 
• A start 10 connections to B 
• D starts 1 connection to E 
• Each connection gets about the same throughput 

• Then A gets 10 times more throughput than D

A Bx

D E
y



Cheating

• Either sender or receiver can independently cheat! 

• Why hasn’t Internet suffered congestion collapse yet? 

• Individuals don’t hack TCP (not worth it) 
• Companies need to avoid TCP wars 

• How can we prevent cheating  
• Verify TCP implementations 
• Controlling end points is hopeless 

• Nobody cares, really



Any Questions?



How Do You Solve These Problems?

• Bias against long RTTs 

• Slow to ramp up (for short-flows) 

• Cheating 

• Need for uniformity



Back up slides on UDP 

(not needed for exams)



UDP: User Datagram Protocol

• Lightweight communication between processes 
• Avoid overhead and delays of ordered, reliable delivery 
• Send messages to and receive from a socket  

• UDP described in RFC 768 - (1980) 
• IP plus port numbers to support (de)multiplexing 
• Optional error checking on the packet contents 

• Checksum field = 0 means “don’t verify checksum” 
• (local port, local IP, remote port, remote IP) <—> socket

Source Port # Dest Port #

Application Data (Message)

Checksum Length



Question

• Why do UDP packets carry sender’s port?



Popular Applications That Use UDP

• Some interactive streaming apps 
• Retransmitting lost/corrupted packets is often pointless — by the 

time the packet is transmitted, it’s too late 
• E.g., telephone calls, video conferencing, gaming 
• Modern streaming protocols using TCP (and HTTP) 

• Simple query protocols like Domain Name System 
• Connection establishment overhead would double cost 
• Easier to have application retransmit if needed

�Address for bbc.co.uk?�

�212.58.224.131�



Back up slides on TCP 

(not needed for exams)



Ports

• Separate 16-bit port address space for UDP, TCP 

• “Well known” ports (0-1023) 
• Agreement on which services run on these ports 
• e.g., ssh:22, http:80 
• Client (app) knows appropriate port on sender 
• Services can listen on well-known ports



Multiplexing and Demultiplexing

• Host receives IP datagrams 
• Each datagram has source and destination IP address 
• Each segment has source and destination port number  

• Host uses IP address and port numbers to direct the segment to 
appropriate socket

Source Port # Dest Port #

Other Header Fields

Application Data (Message)



IP Packet Structure

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



IP Packet Structure

8-bit Type of 
Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL)

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

6 = TCP
7 = UDP

16-bit Source Port 16-bit Dest Port

More Transport Header Fields…

4-bit Version
4-bit Header 

Length



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

These 
should be 

familiar



TCP Segment

• IP Packet 
• No bigger than Maximum Transmission Unit (MTU) 
• E.g., up to 1500 bytes with Ethernet 

• TCP Packet 
• IP packet with a TCP header and data inside 
• TCP header >= 20 bytes long 

• TCP Segment 
• No more than MSS (Maximum Segment Size) bytes 
• E.g., upto 1460 consecutive bytes from the stream 
• MSS = MTU - IP header - TCP header

IP Hdr
IP data (datagram)

TCP HdrTCP data (segment)



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Starting byte offset 
of data carried in 

this segment



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Acknowledgement 
gives sequence 

number just 
beyond highest 

sequence number 
received in order 

(“What byte is 
next”)



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

See /usr/include/netinet/tcp.h on Unix Systems



Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

5 = 20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…



Step 2: B’s SYN-ACK Packet

B’s port A’s port

A’s Initial Sequence Number

ACK = A’s ISN plus 1

20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts and is ready to hear the next byte…

… upon receiving this packet, A can start sending data



Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

A’s Initial Sequence Number

ACK = B’s ISN plus 1

20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

… upon receiving this packet, B can start sending data



TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window



TCP Header: What’s left?

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Number of 4-byte 
words in TCP 

header;                 
5 = no options

“Must be Zero”     
6 bits reserved



TCP Header: What’s left?

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Used with URG 
flag to indicate 

urgent data (not 
discussed further)



Implementing Sliding Window

• Sender maintains a window 
• Data that has been sent out but not yet ACK’ed 

• Left edge of window: 
• Beginning of unacknowledged data 
• Moves when data is ACKed 

• Window size = maximum amount of data in flight 

• Receiver sets this amount, based on its available buffer space 
• If it has not yet sent data up to the app, this might be small



TCP Header: What’s left?

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window



Timing Diagram: 3-Way Handshaking

SYN, SeqNum = x

ACK, ACK = y+1

SYN + ACK, SeqNum = y, Ack = x + 1

Active Open Passive Open
Client (initiator) Server

listen()

connect()

accept()



Note: TCP is Duplex

• A TCP connection between A and B can carry data in both directions 

• Packets can both carry data and ACK data 

• If the ACK flag is set, then it is ACKing data 

• (details to follow …)



What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost 
• Packet is lost inside the network, or 
• Server discards the packet (e.g., listen queue is full) 

• Eventually, no SYN-ACK arrives 
• Sender sets a timer and waits for the SYN-ACK 
• … and retransmits the SYN if needed 

• How should the TCP sender set the timer? 
• Sender has no idea how far away the receiver is  
• Hard to guess a reasonable length of time to wait 
• Should (RFCs 1122 and 2988) use default of 3 seconds 

• Other implementations instead use 6 seconds



SYN Loss and Web Downloads

• User clicks on a hypertext link 
• Browser creates a socket and does a “connect” 
• The “connect” triggers the OS to transmit a SYN 

• If the SYN is lost… 
• 3-4 seconds of delay: can be very long 

• User may become impatient 
• … and click the hyperlink again, or click “reload” 

• User triggers an “abort” of the “connect” 
• Browser creates a new socket and another “connect” 
• Essentially, forces a faster send of a new SYN packet! 
• Sometimes very effective, and the page comes quickly



Tearing Down the Connection



Normal Termination

• Finish (FIN) to close connections 
• FIN occupies one byte in the sequence space 

• Other host ack’s the byte to confirm 
• Closes A’s side of connection, but not B’s 

• Until B likewise sends a FIN 
• Which A then acks

B

A

Time

…SY
N

AC
K

Da
ta FI
N

AC
K

SYN ACK

ACK

ACK

FIN

Timeout:
Avoid reincarnation

Can retransmit FIN ACK if 
ACK lost

Connection now closed



Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN
B

A

Time

…SY
N

AC
K

Da
ta FI
N

AC
K

SYN ACK

ACK

FIN+ACK

Timeout:
Avoid reincarnation

Can retransmit FIN ACK if 
ACK lost

Connection now closed



Abrupt Termination

• A sends a RESET (RST) to B 
• E.g., because app. Process on A crashed 

• That’s it 
• B does not ack the RST 
• This, RST is not delivered reliably 
• And, any data in flight is lost 
• But, if B sends anything more, will elicit another RST

B

A

Time

…SY
N

AC
K

Da
ta RS

T

RS
T

SYN ACK

ACK

Data



TCP State Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK exchanges are 
in here



A Simpler View of the Client Side

CLOSED

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

SYN (Send)

Rcv. SYN + ACK, 
Send ACK

Send FINRcv. ACK, Send 
Nothing

Rcv. FIN, 
Send ACK


