A physical layer perspective on WANs (Part 2)

Guest lecture: Rachee Singh

CS4450: Introduction to Computer Networks

Fiber (glass) is an efficient (low loss) medium for transmitting signals.

Fiber (glass) is an efficient (low loss) medium for transmitting signals.

1. Modulating the light signal

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations
 - 1. Change *amplitude* of the signal

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations
 - 1. Change *amplitude* of the signal
 - 2. Change *phase* of the signal

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations
 - 1. Change *amplitude* of the signal
 - 2. Change *phase* of the signal
 - 3. ..

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations
 - 1. Change *amplitude* of the signal
 - 2. Change *phase* of the signal
 - 3. ..
- 3. Finite set of choices for change in properties of the signal

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations
 - 1. Change *amplitude* of the signal
 - 2. Change *phase* of the signal
 - 3. ..
- 3. Finite set of choices for change in properties of the signal
 - 1. Each choice is called a *symbol*

- 1. Modulating the light signal
 - 1. Encode bits on a wave or pulse
 - 2. By changing the *properties* of the signal
- 2. Types of modulations
 - 1. Change *amplitude* of the signal
 - 2. Change *phase* of the signal
 - 3. ..
- 3. Finite set of choices for change in properties of the signal
 - 1. Each choice is called a *symbol*

1. Simple modulation format:

- 1. Simple modulation format:
 - 1. One symbol to represent "1"

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode
 - 1. Phase = 0 to encode input bit 0

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode
 - 1. Phase = 0 to encode input bit 0
 - 2. Phase = 180 to encode input bit 1

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode
 - 1. Phase = 0 to encode input bit 0
 - 2. Phase = 180 to encode input bit 1

- Simple modulation format: 1.
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode
 - 1. Phase = 0 to encode input bit 0
 - 2. Phase = 180 to encode input bit 1
- This modulation is called *binary phase shift keying (BPSK)* 3.

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode
 - 1. Phase = 0 to encode input bit 0
 - 2. Phase = 180 to encode input bit 1
- 3. This modulation is called *binary phase shift keying (BPSK)*
- 4. Number of bits encoded per symbol $N = log_2 M$

keying (BPSK) log₂M

- 1. Simple modulation format:
 - 1. One symbol to represent "1"
 - 2. One symbol to represent "0"
- 2. Modify the phase of the signal to encode
 - 1. Phase = 0 to encode input bit 0
 - 2. Phase = 180 to encode input bit 1
- 3. This modulation is called *binary phase shift keying (BPSK)*
- 4. Number of bits encoded per symbol $N = log_2 M$
 - 1. BPSK encodes 1 bit per symbol

keying (BPSK) log₂M

1. Quadrature phase shift keying (QPSK)

1. Quadrature phase shift keying (QPSK) 1. Four symbols

1. Quadrature phase shift keying (QPSK)

- 1. Four symbols
- 2. 2 bits per symbol

Packing more bits per symbol with different modulation formats

Symbol rate or baud rate:

Symbol rate or baud rate:

1. Decides number of symbols per second
Symbol rate or baud rate:

- 1. Decides number of symbols per second
- 2. Unit of symbol rate: baud

Symbol rate or baud rate:

- 1. Decides number of symbols per second
- 2. Unit of symbol rate: baud
- 3. Example: baud rate of 1000 = 1000symbols sent on the channel per second

Symbol rate or baud rate:

- 1. Decides number of symbols per second
- 2. Unit of symbol rate: baud
- 3. Example: baud rate of 1000 = 1000 symbols sent on the channel per second

Baud rate = 4, N = 2

Hartley's Law

 $R = f_p log_2 M$ Where, R = data rate, bit rate in bits/second f_p = symbol rate or baud rate in symbols/second M = number of levels in a given symbol

Hartley's Law

 $R = f_p log_2 M$ Where, R = data rate, bit rate in bits/second $f_p = \text{symbol rate or baud rate in symbols/second}$ M = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?

Hartley's Law

 $R = f_p log_2 M$ Where, R = data rate, bit rate in bits/second $f_p =$ symbol rate or baud rate in symbols/second M = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?

Hint:16-QAM has 16 levels per symbol

Hartley's Law

 $R = f_p log_2 M$ Where, R = data rate, bit rate in bits/second $f_p =$ symbol rate or baud rate in symbols/second M = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?

*Hint:*16-QAM has 16 levels per symbol Answer = $50 * log_2 16 = 200Gbps$

1. All media add some noise to the signal

All media add some noise to the signal
Fiber adds noise to the transmitted signal

- 1. All media add some noise to the signal
 - 1. Fiber adds noise to the transmitted signal
 - 2. The received symbols are a result of the transmission + noise

- 1. All media add some noise to the signal
 - 1. Fiber adds noise to the transmitted signal
 - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission

- 1. All media add some noise to the signal 1. Fiber adds noise to the transmitted signal

 - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission
 - 1. Depends on the noise in the media

- 1. All media add some noise to the signal 1. Fiber adds noise to the transmitted signal
- - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission
 - 1. Depends on the noise in the media
- High noise => harder to decode bits from symbols 3.

- 1. All media add some noise to the signal
 - 1. Fiber adds noise to the transmitted signal
 - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission
 - 1. Depends on the noise in the media
- 3. High noise => harder to decode bits from symbols

Transmitted

- 1. All media add some noise to the signal
 - Fiber adds noise to the transmitted signal 1.
 - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission
 - 1. Depends on the noise in the media
- High noise => harder to decode bits from symbols 3.

- 1. All media add some noise to the signal
 - Fiber adds noise to the transmitted signal 1.
 - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission
 - 1. Depends on the noise in the media
- High noise => harder to decode bits from symbols 3.

Transmitted

Received

Transmitted

- 1. All media add some noise to the signal
 - Fiber adds noise to the transmitted signal 1.
 - 2. The received symbols are a result of the transmission + noise
- 2. Sustaining a modulation format for transmission
 - 1. Depends on the noise in the media
- High noise => harder to decode bits from symbols 3.

Received

"10"

Transmitted

"00"

1. Hartley's law assumes an "error-less" channel

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel
 - Signal power is the power of the data signal that encodes bits

noise power in the channel ignal that encodes bits

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel • Signal power is the power of the data signal that encodes bits • Noise power is the power of the noise on fiber

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel • Signal power is the power of the data signal that encodes bits • Noise power is the power of the noise on fiber

•
$$SNR = \frac{P_{signal}}{P_{noise}}$$

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel • Signal power is the power of the data signal that encodes bits • Noise power is the power of the noise on fiber

•
$$SNR = \frac{P_{signal}}{P_{noise}}$$

3. SNR is often measured in decibels (dB): $SNR_{db} = 10log_{10}(SNR)$

- 1. Hartley's law assumes an "error-less" channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
- 2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel • Signal power is the power of the data signal that encodes bits • Noise power is the power of the noise on fiber

•
$$SNR = \frac{P_{signal}}{P_{noise}}$$

- 3. SNR is often measured in decibels (dB): $SNR_{db} = 10log_{10}(SNR)$ • $10log_{10}$ of a quantity makes the unit decibels

Long-haul network connectivity: Shannon capacity

Shannon-Hartley Law states the max. rate at which information can be transmitted over a noisy channel

 $R = B \cdot log_2(1 + SNR)$

Where,

- R = data rate, bit rate in bits/second
- B = bandwidth in Hz of the channel
- SNR = signal to noise ratio (measures signal quality)
- $R \approx 0.332 \cdot B \cdot SNR$

Claude Shannon

Long-haul network connectivity: Shannon capacity

- 1. Shannon-Hartley Law
 - 1. $R \approx 0.332 \cdot B \cdot SNR$
- 2. Fundamental limit on the capacity of a channel
- 3. Cannot pack more bits by
 - 1. Increasing modulation format
 - 2. Increasing symbol rate

Measure signal quality on a fiber over time

- 1. Measure signal quality on a fiber over time
- 2. Signal quality of a wavelength on fiber over time undergoes changes

- 1. Measure signal quality on a fiber over time
- 2. Signal quality of a wavelength on fiber over time undergoes changes
Long-haul network connectivity: signal quality

- Measure signal quality on a fiber over time
- Signal quality of a wavelength on fiber over time undergoes changes

Long-haul network connectivity: Shannon capacity

Exercise: What is the maximum data rate that could be supported by this wavelength at the time shown by the cross if the bandwidth of the wavelength is 50GHz?

 $R = B \cdot log_2(1 + SNR)$

Where,

R = data rate, bit rate in bits/second

B = bandwidth in Hz of the channel

SNR = signal to noise ratio (measures signal quality)

 $R \approx 0.332 \cdot B \cdot SNR$

Long-haul network connectivity: Shannon capacity

Exercise: What is the maximum data rate that could be supported by this wavelength at the time shown by the cross if the bandwidth of the wavelength is 50GHz?

 $R = B \cdot log_2(1 + SNR)$

Where,

R = data rate, bit rate in bits/second

B = bandwidth in Hz of the channel

SNR = signal to noise ratio (measures signal quality)

 $R \approx 0.332 \cdot B \cdot SNR$

Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber

Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber

WANs need high infrastructure investment

- 1. High capital expense (billions of \$)
 - 1. Hardware costs for switches
 - 2. O(100,000) miles fiber
- 2. High operational expenses (millions of \$ annually)
- 3. Crucial to operate efficient WANs

- Allocate traffic demands in the WAN to:
 - achieve optimal network *flow*
 - minimal traffic latency
 - fairness across traffic classes

Network Topology R

What does this remind me of from your algorithms class?

What does this remind me of from your algorithms class?

Max flow algorithms: Ford Fulkerson, Edmond's Karp etc.

Using WANs efficiently: traffic engineering

• Complex Objectives

. . .

- achieve optimal network *flow*
- minimal traffic *latency*
- fairness across traffic classes

• Traffic optimization over WANs to achieve different goals is called traffic engineering

Inputs

Inputs

Network Topology

Inputs

Network Topology

Demand Matrix

Inputs

Network Topology

Demand Matrix

Network Paths

Inputs

Constraints

Constraints

Constraints

Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber

