
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	16	
Socket	Programming

Midhul	Vuppalapa9	



Goals	for	Today’s	Lecture

• Understanding	the	Socket	API	
• How	does	the	Socket	API	work	under	the	hood?	
• Programming	with	the	Socket	API	

• Live	demo

Nearly	all	applica9ons	you	use	today	rely	on	the	Socket	API



What	is	the	Socket	API?

• Socket	API:	Interface	for	applications	to	communicate	with	each	other	

• Provided	by	the	Operating	System	(OS)	

• Key	abstraction:	Socket	(End-point	for	communication)	

• Applications	can	be	on	same	or	different	hosts

App1 App2 App3

Socket	1 Socket	2

Host	1 Host	2

Network

Socket	3 Socket	4



Where	do	Sockets	fit	in	the	end-to-end	picture?

Transport

Network

Data	Link

Physical

App1 App2 ApplicaPons

OS	Network	Stack

Network	
Fabric

Sockets
(Each	is	assigned	port	number)



How	do	applications	interact	with	sockets?

• Socket	works	very	similar	to	file	

• open()		socket():	Open	a	socket	
• read():	Read	data	from	a	socket	(i.e.	receive	data)	

• write():	Write	data	to	a	socket	(i.e.	send	data)	

• close():	close	a	socket

• Note	
• recv()	is	alternative	for	read()	
• send()	is	alternative	for	write()



Types	of	communication

• Two	main	modes	of	communication	

• Connection-oriented	(Stream	sockets)	

• First,	connection	is	established	between	a	pair	of	sockets	
• Then,	data	is	exchanged	between	them	

• “Pipe”	abstraction	(reliable	&	in-order	delivery	of	data)	
• Implemented	on	top	of	TCP	Transport	

• Connection-less	(Datagram	sockets)	

• No	connection	establishment	

• Data	can	be	directly	exchanged	between	sockets	
• No	guarantee	of	reliable	or	in-order	delivery	
• Implemented	on	top	of	UDP	transport



Stream	sockets:	Pipe	Abstraction

• Bi-directional	“pipe”	between	a	pair	of	sockets	
• Sequence	of	bytes	sent	on	one	end	will	be	received	on	other	end	
• Reliable	delivery	
• In-order	delivery	
• No	duplication

Socket	1 Socket	2

d
c
b
a

d
c
b
a

Bi-direcPonal	Pipe



Under	the	hood

App1

Transport

Network

Data	Link

Physical
Network	
Fabric

Src	IP:	10.0.0.1
Src	port:	5001

Dst	IP:

Dst	port:

App2

Transport

Network

Data	Link

Physical

Src	IP:	11.0.0.1
Src	port:	6001

Dst	IP:

Dst	port:

Send		
buffer

Recv		
buffer

Send		
buffer

Recv		
buffer

write

11.0.0.1

6001

10.0.0.1

5001

read



Details	of	reading	/	writing	to	/	from	sockets

• read(X	bytes)	
• Reads	up	to	X	bytes	from	the	socket	receive	buffer	

• Returns	the	number	of	bytes	actually	read	upon	completion	

• Upon	successful	completion:	can	return	any	non-zero	value	<=	X	
• E.g:	If	you	read(100	bytes)	and	socket	receive	buffer	has	only	50	bytes,	then	it	
will	read	50	bytes	and	return	

• write(X	bytes)	
• Writes	up	to	X	bytes	to	the	socket	send	buffer	

• Returns	the	number	of	bytes	actually	written	upon	completion	

• Upon	successful	completion:	can	return	any	non-zero	value	<=	X	
• E.g:	If	you	write(100	bytes)	and	socket	send	buffer	has	only	50	bytes	of	space	
left,	then	it	will	write	50	bytes	and	return

What	if	socket	receive	buffer	is	empty	or	send	buffer	is	full?



Blocking	vs	Non-blocking	sockets

• What	if	socket	receive	buffer	is	empty	/	send	buffer	is	full?	

• read	/	write	call	cannot	complete	successfully	

• Two	modes:	

• (Default)	Blocking	mode	

• Application	is	blocked	until	read	/	write	call	can	complete	

successfully	

• Non-blocking	mode	

• read	/	write	call	returns	immediately	with	ERROR	



Client-Server	Model

Server

80 443

Client	1

50015002

Client	2

50105002

Client	3

60016002

Client	4

50515050

8.123.111.1

10.0.11.1

52.105.0.3

32.8.8.100

42.111.5.80

Well	known	ports		
that	clients	can	connect	to

Port	numbers	assigned	by	the	OS



Client-Server	Model	-	APIs

Server

socket()

bind()

listen()

accept()

Client	1

socket()

connect()

Returns	a		
new	socket

write()

read()

write()

read()

(Blocks	unPl	client		
requests	a	connecPon)

(Blocks	unPl	connecPon		
established	with	server)

Conne
cPon	e

stablis
hed

Client	2

socket()

connect()

write()

read()

read()

write()



Demo



Designing	servers	for	massive	scale

• Scalability	of	the	server	that	we	just	wrote	(in	demo)	

• Works	fine	for	100s-1000s	of	connections	

• What	if	we	want	to	handle	100,000+	connections?	

• Problem:	1	thread	per-connection	

• 100,000s	of	connections	=>	100,000s	of	threads	=>	Inefficient	

• Can	single	thread	handle	multiple	connections?	

• Yes.	How:	Use	non-blocking	sockets	
• Challenge:	How	to	monitor	multiple	sockets?	

• Naive	approach:	Thread	constantly	iterates	over	all	sockets	and	
check	if	any	of	them	have	data	available	(Not	efficient)	

• Solution:	OS	provides	APIs	to	monitor	sockets	(select/poll/epoll)	

• Con:	Difficult	to	program	with



Questions?


