CS4450

Computer Networks: Architecture and Protocols

Lecture 14
Border-Gateway Protocol

Rachit Agarwal

Announcements

- Exam2 on 10/24
- 10/26: Live coding session; please bring your laptops

Goals for Today's Lecture

- Deep dive into Inter-domain routing (Border-Gateway Protocol (BGP))
- One of the most non-intuitive protocols
- Driven by "business goals", rather than "performance goals"
- I will try to provide as much intuition as possible
- But, for the above reasons, BGP is one of the harder protocols
- Understanding BGP
- Do a lot of small examples
- We will focus on a synchronous version:
- One node in the network acts at a time
- In practice, BGP implementations are asynchronous

Recap from last lecture

Recap: What does a computer network look like?

"Autonomous System (AS)" or "Domain"
Region of a network under a single administrative entity

Recap: IP addressing enables Scalable Routing

a.c.*.* is this way
a.b.*.* is this way

Telecom

Recap: IP addressing enables Scalable Routing

Can add new hosts/networks without updating the routing entries at France Telecom

Recap: Business Relationships Shape Topology and Policy

- Three basic kinds of relationships between ASes
- AS A can be AS B’s customer
- AS A can be AS B’s provider
- AS A can be AS B's peer
- Business implications
- Customer pays provider
- Peers don't pay each other
- Exchange roughly equal traffic

Recap: Why Peer?

E.g., D and E talk a lot

Peering saves
B and C money

Relations between ASes

provider \longmapsto customer peer peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Recap: Inter-domain Routing Follows the Money

\longmapsto traffic allowed $\longleftarrow---\rightarrow$ traffic not allowed

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Border Gateway Protocol

Administrative Structure Shapes Inter-domain Routing

- ASes want freedom to pick routes based on policy
- "My traffic can't be carried over my competitor's network!"
- "I don't want to carry A's traffic through my network!"
- Cannot be expressed as Internet-wide "least cost"
- ASes want autonomy
- Want to choose their own internal routing protocol
- Want to choose their own policy
- ASes want privacy
- Choice of network topology, routing policies, etc.

Inter-domain Routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
- Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol - Implemented by AS border routers

BGP

An AS advertises
its best routes
to one or more IP prefixes

Each AS selects the
"best" route it hears advertised for a prefix

Sound familiar?

BGP Inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology
- Iterative and distributed convergence on paths
- But, four key differences

BGP vs. DV

(1) BGP does not pick the shortest path routes!

- BGP selects route based on policy, not shortest distance/least cost

Node 2 may prefer 2, 3, 1 over 2, 1

- How do we avoid loops?

BGP vs. DV

(2) Path-vector Routing

- Idea: advertise the entire path
- Distance vector: send distance metric per dest. d
- Path vector: send the entire path for each dest. d

Loop Detection with Path-Vector

- Node can easily detect a loop
- Look for its own node identifier in the path
- Node can simply discard paths with loops
- e.g. node 1 sees itself in the path $3,2,1$

BGP vs. DV

(2) Path-vector Routing

- Idea: advertise the entire path
- Distance vector: send distance metric per dest. d
- Path vector: send the entire path for each dest. d
- Benefits
- Loop avoidance is easy
- Flexible policies based on entire path

BGP vs. DV

(3) Selective Route Advertisement

- For policy reasons, an AS may choose not to advertise a route to a destination
- As a result, reachability is not guaranteed even if the graph is connected

Example: AS\#2 does not want to carry traffic between AS\#1 and AS\#3

BGP vs. DV

(4) BGP may aggregate routes

- For scalability, BGP may aggregate routes for different prefixes

BGP Outline

- BGP Policy
- Typical policies and implementation
- BGP protocol details
- Issues with BGP

Policy:

Imposed in how routes are selected and exported

- Selection: Which path to use
- Controls whether / how traffic leaves the network
- Export: Which path to advertise
- Controls whether / how traffic enters the network

Typical Selection Policy

- In decreasing order of priority:

1. Make or save money (send to customer > peer > provider)
2. Maximize performance (smallest AS path length)
3. Minimize use of my network bandwidth ("hot potato")
4. ...

Typical Export Policy

Destination prefix advertised by...	Export route to...
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

Known as the "Gao-Rexford" rules
Capture common (but not required!) practice

BGP is Inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology
- Iterative and distributed convergence on paths
- But, four key differences
- BGP does not pick shortest paths
- Each node announces one or multiple PATHs per destination
- Selective Route advertisement: not all paths are announced
- BGP may aggregate paths
- may announce one path for multiple destinations

BGP Outline

- BGP Policy
- Typical policies and implementation
- BGP protocol details
- Issues with BGP

Policy:

Imposed in how routes are selected and exported

- Selection: Which path to use
- Controls whether / how traffic leaves the network
- Export: Which path to advertise
- Controls whether / how traffic enters the network

Typical Selection Policy

- In decreasing order of priority:

1. Make or save money (send to customer > peer > provider)
2. Maximize performance (smallest AS path length)
3. Minimize use of my network bandwidth ("hot potato")
4. ...

Typical Export Policy

Destination prefix advertised by...	Export route to...
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

Known as the "Gao-Rexford" rules
Capture common (but not required!) practice

Gao-Rexford

With Gao-Rexford, the AS policy graph is a DAG (directed acyclic graph) and routes are "valley free"

BGP Outline

- BGP Policy
- Typical policies and implementation
- BGP protocol details
- Issues with BGP

Who speaks BGP?

Border routers at an Autonomous System

What Does "speak BGP" Mean?

- Implement the BGP Protocol Standard
- Internet Engineering Task Force (IETF) RFC 4271
- Specifies what messages to exchange with other BGP "speakers"
- Message types (e.g. route advertisements, updates)
- Message syntax
- Specifies how to process these messages
- When you receive a BGP update, do x
- Follows BGP state machine in the protocol spec and policy decisions, etc.

BGP Sessions

A border router speaks BGP with border routers in other ASes

BGP Sessions

A border router speaks BGP with other (interior and border) routers in its own AS

eBGP, iBGP, IGP

- eBGP: BGP sessions between border routers in different ASes
- Learn routes to external destinations
- iBGP: BGP sessions between border routers and other routers within the same AS
- Distribute externally learned routes internally
- IGP: Interior Gateway Protocol = Intradomain routing protocol
- Provides internal reachability
- e.g. OSPF, RIP

Putting the Pieces Together

3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

Basic Messages in BGP

- Open
- Establishes BGP session
- Update
- Inform neighbor of new routes
- Inform neighbor of old routes that become inactive
- Keepalive
- Inform neighbor that connection is still viable

Route Updates

- Format: <IP prefix: route attributes>
- Two kinds of updates:
- Announcements: new routes or changes to existing routes
- Withdrawals: remove routes that no longer exist
- Route Attributes
- Describe routes, used in selection/export decisions
- Some attributes are local
- i.e. private within an AS, not included in announcements
- Some attributes are propagated with eBGP route announcements
- Many standardized attributes in BGP

Route Attributes (1): ASPATH

- Carried in route announcements
- Vector that lists all the ASes a route advertisement has traversed (in reverse order)

Route Attributes (2): LOCAL PREF

- "Local Preference"
- Used to choose between different AS paths
- The higher the value, the more preferred
- Local to an AS; carried only in iBGP messages

BGP table at AS4:

Destination	AS Path	Local Pref
$140.20 .1 .0 / 24$	AS3 AS1	300
$140.20 .1 .0 / 24$	AS2 AS1	100

Route Attributes (3) : MED

- "Multi-Exit Discriminator"
- Used when ASes are interconnected via two or more links
- Specifies how close a prefix is to the link it is announced on
- Lower is better
- AS announcing prefix sets MED
- AS receiving prefix (optionally!) uses MED to select link

Route Attributes (4): IGP Cost

- Used for hot-potato routing
- Each router selects the closest egress point based on the path cost in intra-domain protocol

Using Attributes

- Rules for route selection in priority order

1. Make or save money (send to customer $>$ peer $>$ provider)
2. Maximize performance (smallest AS path length)
3. Minimize use of my network bandwidth ("hot potato")
4. ...

Using Attributes

- Rules for route selection in priority order

Priority	Rule	Remarks
1	LOCAL PREF	Pick highest LOCAL PREF
2	ASPATH	Pick shortest ASPATH length
3	MED	Lowest MED preferred
4	eBGP > iBGP	Did AS learn route via eBGP (preferred) or iBGP?
5	iBGP path	Lowest IGP cost to next hop (egress router)
6	Router ID	Smallest next-hop router's IP address as tie-breaker

BGP Update Processing

Open ended programming.
Constrained only by vendor configuration language

BGP Outline

- BGP Policy
- Typical policies and implementation
- BGP protocol details
- Issues with BGP

BGP: Issues

- Reachability
- Security
- Convergence
- Performance
- Anomalies

Reachability

- In normal routing, if graph is connected then reachability is assured
- With policy routing, this doesn't always hold

Security

- An AS can claim to serve a prefix that they actually don't have a route to (blackholing traffic)
- Problem not specific to policy or path vector
- Important because of AS autonomy
- Fixable: make ASes prove they have a path
- But...
- AS may forward packets along a route different from what is advertised
- Tell customers about a fictitious short path...
- Much harder to fix!

Convergence

- If all AS policies follow Gao-Rexford rules,
- Then BGP is guaranteed to converge (safety)
- For arbitrary policies, BGP may fail to converge!

BGP Example (All good)

	1	2	3	4
R1	10	20	30	-
R2	10	20	30	430
R3	130	20	30	430

GOOD GADGET

Example of Policy Oscillation

"1" prefers "1 30 " over "1 0 " to reach " 0 " 10

320
30

Step-by-step Policy Oscillation

Initially: nodes 1, 2, 3 know only shortest path to 0

Step-by-step Policy Oscillation

1 advertises its path 10 to 2

Step-by-step Policy Oscillation

Step-by-step Policy Oscillation

3 advertises its path 30 to 1

Step-by-step Policy Oscillation

Step-by-step Policy Oscillation

1 withdraws its path 10 from 2

Step-by-step Policy Oscillation

Step-by-step Policy Oscillation

2 advertises its path 20 to 3

Step-by-step Policy Oscillation

Step-by-step Policy Oscillation

3 withdraws its path 30 from 1

Step-by-step Policy Oscillation

Step-by-step Policy Oscillation

1 advertises its path 10 to 2

Step-by-step Policy Oscillation

Step-by-step Policy Oscillation

2 withdraws its path 20 from 3

Step-by-step Policy Oscillation

We are back to where we started!

BGP Example (Persistent Loops)

	1	2	3	4
$R 1$	10	20	30	-
$R 2$	10	20	30	420
$R 3$	10	20	3420	420
$R 4$	10	$\mathbf{2 1 0}$	3420	420
$R 5$	10	210	3420	-
$R 6$	10	210	30	-
$R 7$	130	210	30	-
$R 8$	130	20	30	-
$R 9$	130	20	30	420
$R 10$	130	20	$\mathbf{3 4 2 0}$	420
$R 11$	10	20	3420	420

BGP Example (Bad bad bad)

NAUGHTY GADGET

	1	2	3	4
R1	10	20	$\mathbf{3 0}$	-
R2	10	20	$\mathbf{3 0}$	430
R3	130	20	30	430

	1	2	3	4
$R 1$	10	$\mathbf{2 0}$	30	-
$R 2$	10	20	30	$\mathbf{4 2 0}$
$R 3$	$\mathbf{1 0}$	20	3420	420
$R 4$	10	$\mathbf{2 1 0}$	3420	420
$R 5$	10	210	3420	-
$R 6$	10	210	$\mathbf{3 0}$	-
$R 7$	$\mathbf{1 3 0}$	210	30	-
$R 8$	130	$\mathbf{2 0}$	30	-
$R 9$	130	20	30	$\mathbf{4 2 0}$
$R 10$	130	20	$\mathbf{3 4 2 0}$	420
$R 11$	10	20	3420	420

Convergence

- If all AS policies follow Gao-Rexford rules,
- Then BGP is guaranteed to converge (safety)
- For arbitrary policies, BGP may fail to converge!
- Why should this trouble us?

Performance Non-Issues

- Internal Routing
- Domains typically use "hot potato" routing
- Not always optimal, but economically expedient
- Policy not about performance
- So policy-chosen paths aren't shortest
- AS path length can be misleading
- 20% of paths inflated by at least 5 router hops

Performance (example)

- AS path length can be misleading
- An AS may have many router-level hops

Performance: Real Issue

Slow Convergence

- BGP outages are biggest source of Internet problems
- Labovitz et al. SIGCOMM'97
- 10% of routes available less than 95% of the time
- Less than 35% of routes available 99.99% of the time
- Labovitz et al. SIGCOMM 2000
- 40% of path outages take $30+$ minutes to repair
- But most popular paths are very stable

