

Computer Networks: Architecture and Protocols

Lecture 13 Path-Vector Protocol (BGP)

Rachit Agarwal

Goals for Today's Lecture

- Dive deeper into Inter-domain routing: Border-Gateway Protocol
- Keep sanity: very different from everything we have seen so far

Recap from last lecture

Recap: Three requirements for addressing

- Scalable routing
 - How must state must be stored to forward packets?
 - Desired: Small #routing entries (less than one entry per host per switch)
 - How much state needs to be updated upon host arrival/departure?
 - Desired: Small #updates (less than one update per switch per host change)
- Efficient forwarding
 - How quickly can one locate items in routing table?
- Host must be able to recognize packet is for them

Recap: Using L2 (MAC) names does not enable scalable routing

- Scalable routing
 - How much state to forward packets?
 - One entry per host (at each switch)
 - How much state updated for each arrival/departure?
 - One entry per host (at each switch)
- Efficient forwarding
 - Exact match lookup on MAC addresses (exact match is easy!)
- Host must be able to recognize the packet is for them
 - MAC address does this perfectly

Recap: Today's Addressing (CIDR)

- Classless Inter-domain Routing
- Idea: Flexible division between network and host addresses
- Prefix is **network address**
- Suffix is host address
- Example:
 - 128.84.139.5/23 is a 23 bit prefix with:
 - First 23 bits for network address
 - Next 9 bits for host addresses: maximum 2^9 hosts
 - All hosts within the network have the same first 23 bits (x.y.z.*)
- Terminology: "Slash 23"

Recap: How does CIDR meet our requirements?

- To understand this, we need to understand the routing on the Internet
- And to understand that, we need to understand the Internet

Recap: What does a computer network look like?

Recap: Autonomous Systems (AS)

- An AS is a network under a single administrative control
 - Currently over 30,000
 - Example: AT&T, France Telecom, Cornell, IBM, etc.
 - A collection of routers interconnecting multiple switched Ethernets
 - And interconnections to neighboring ASes
- Sometimes called "Domains"
- Each AS assigned a unique identifier
 - 16 bit AS number

Recap: IP addressing -> Scalable Routing?

Recap: IP addressing -> Scalable Routing?

Recap: IP addressing -> Scalable Routing?

ESNet must maintain routing entries for both a.*.* and a.c.*.*

Given this addressing,

How do we think about <u>Inter-domain</u> routing protocols?

Administrative Structure Shapes Inter-domain Routing

- ASes want freedom to pick routes based on policy
 - "My traffic can't be carried over my competitor's network!"
 - "I don't want to carry A's traffic through my network!"
 - Cannot be expressed as Internet-wide "least cost"
- ASes want autonomy
 - Want to choose their own internal routing protocol
 - Want to choose their own policy
- ASes want privacy
 - Choice of network topology, routing policies, etc.

Choice of Routing Algorithm

- Link State (LS) vs. Distance Vector (DV)
- LS offers no privacy broadcasts all network information
- LS limits autonomy need agreement on metric, algorithm
- DV is a decent starting point
 - Per-destination updates by intermediate nodes give us a hook
 - But, wasn't designed to implement policy
 - ... and is vulnerable to loops if shortest paths not taken

The "Border Gateway Protocol" (BGP) extends Distance-Vector ideas to accomodate policy

Business Relationships Shape Topology and Policy

- Three basic kinds of relationships between ASes
 - AS A can be AS B's customer
 - AS A can be AS B's *provider*
 - AS A can be AS B's *peer*
- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Exchange roughly equal traffic

Business Relationships

- Business Implications
- Customers pay provider
- Peers don't pay each other

Why Peer?

Business Implications

- Customers pay provider
- Peers don't pay each other

Routing Follows the Money

 $\longleftarrow \quad traffic allowed \quad \leftarrow - - \rightarrow \quad traffic <u>not</u> allowed$

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing Follows the Money

 An AS only carries traffic to/from its own customers over a peering link

Inter-domain Routing: Setup

- Destinations are IP prefixes (12.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - Implemented by AS border routers

Border Gateway Protocol

An AS advertises its best routes to one or more IP prefixes Each AS selects the "best" route it hears advertised for a prefix

Sound familiar?

BGP Inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology
- Iterative and distributed convergence on paths
- But, four key differences

(1) BGP does not pick the shortest path routes!

• BGP selects route based on policy, not shortest distance/least cost

• How do we avoid loops?

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send *distance metric* per dest. d
 - Path vector: send the *entire path* for each dest. d

Loop Detection with Path-Vector

- Node can easily detect a loop
 - Look for its own node identifier in the path
- Node can simply discard paths with loops
 - e.g. node 1 sees itself in the path 3, 2, 1

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send *distance metric* per dest. d
 - Path vector: send the *entire path* for each dest. d

- Benefits
 - Loop avoidance is easy
 - Flexible policies based on entire path

(3) Selective Route Advertisement

• For policy reasons, an AS may choose not to advertise a route to a destination

• As a result, reachability is not guaranteed even if the graph is connected

Example: AS#2 does not want to carry traffic between AS#1 and AS#3

(4) BGP may aggregate routes

• For scalability, BGP may aggregate routes for different prefixes

BGP Outline

- BGP Policy
 - Typical policies and implementation
- BGP protocol details
- Issues with BGP

Policy:

Imposed in how routes are selected and exported

- Selection: Which path to use
 - Controls whether / how traffic leaves the network
- **Export**: Which path to advertise
 - Controls whether / how traffic enters the network

Typical Selection Policy

- In decreasing order of priority:
 - 1. Make or save money (send to customer > peer > provider)
 - 2. Maximize performance (smallest AS path length)
 - 3. Minimize use of my network bandwidth ("hot potato")
 - 4. ...

Typical Export Policy

Destination prefix advertised by	Export route to
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

Known as the "Gao-Rexford" rules Capture common (but not required!) practice