
Computer Networks:

Architecture and Protocols

CS4450

Lecture 11
Intra-domain Rou2ng: Deep Dive

Rachit Agarwal

Goals for Today’s Lecture

• Continue learning about Routing Protocols
• Link State (Global view, Local computation)—done

• Distance Vector (Local view, Local computation)—more today

• Maintain sanity: its one of the “harder” lectures

• I’ll try to make it -less- hard, but …

• Pay attention

• Review again tomorrow

• Work out a few examples

3

Recap from last few lectures

• Used in switched Ethernet to avoid broadcast storm

• Can be used for routing on the Internet (via “flooding” on spanning tree)

• Three fundamental issues:

• Unnecessary processing at end hosts (that are not the destination)

• Higher latency

• Lower available bandwidth

Recap: Spanning Tree Protocol …

• Routing table:
• Each switch: the next hop for each destination in the network

• Routing state: collection of routing tables across all nodes

• Two questions:

• How can we verify given routing state is valid?

• How can we produce valid routing state?

• Global routing state valid if and only if:
• There are no dead ends (other than destination)

• There are no “persistent” loops

Recap: Routing Tables

• Routing tables are nothing but ….

• A collection of (directed) spanning tree

• One for each destination

• Routing Protocols
• Mechanisms to producing valid routing tables

• What we will see:

• “n” spanning tree protocols running in parallel

Recap: The right way to think about Routing Tables

• Create Tree, route on tree

• E.g., Spanning tree protocol (switched Ethernet)

• Good: easy, no (persistent) loops, no dead ends

• Not-so-good: unnecessary processing, high latency, low bandwidth

• Obtain a global view:
• E.g., Link state (last lecture)

• Distributed route computation:
• E.g., Distance vector

• E.g., Border Gateway Protocol

Recap: Three flavors of protocols for producing valid routing state

Recap: Where to create global view?

• One option: Central server

• Collects a global view

• Computes the routing table for each node

• “Installs” routing tables at each node

• Software-defined Networks: later in course

• Second option: At each router

• Each router collects a global view

• Computes its own routing table using Link-state protocol

• Link-state routing protocol
• OSPF is a specific implementation of link-state protocol

• IETF RFC 2328 (IPv4) or 5340 (IPv6)

Recap: Are Loops Still Possible?

5
5

5 3
5

51

1

A

D E

F

CB

5
5

5 3
5

5

1

A

D E

F

CB

A and D think this is the path to C

E-C link fails, but D doesn’t know yet

E thinks that this the path to C

E reaches C via D, D reaches C via E
Loop!

Recap: Transient Disruptions

5
5

5 3
5

5

1

A

D E

F

CB

5
5

5 3
5

5

1

A

D E

F

CB

• Inconsistent link-state views

• Some routers know about failure before others

• The shortest paths are no longer consistent

• Can cause transient forwarding loops
• Transient loops are still a problem!

Questions?

Distributed Route Computation

Recap: Distance-vector protocol with next-hops (no failures)

14

• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

• Initially each switch X announces (X,0,X) to its neighbors

• Each switch X updates its view upon receiving each message

• Upon receiving message (Y,d,Z) from Z, check Y’s id

• If Y’s id < current root: set root destination = Y

• Switch X computes its shortest distance from the root destination

• If current_distance_to_Y > d + cost of link to Z:

• update current_distance_to_Y = d + cost of link to Z

• update next_hop_to_destination = Z

• If root changed OR shortest distance to the root destination changed,

send all neighbors updated message (Y, current_distance_to_Y, X)

Lets run the Protocol on this example

(with next-hops)

2

1

3

2 1

7

Round 1

Receive Send Next-hops

1 (1, 0, 1) [-]

2 (2, 0, 2) [-]

3 (3, 0, 3) [-]

2

1

3

2 1

7

Round 2

Receive Send Next-hops

1
(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)

[-,

2,

3]

2
(2, 0, 2)

(1, 0, 1),

(3, 0, 3)

(1, 2, 2),

(3, 7, 2)

[1,

-,

3]

3
(3, 0, 3)

(1, 0, 1),

(2, 0, 2)

(1, 1, 3),

(2, 7, 3)

[1,

2,

-]

2

1

3

2 1

7

Round 3

Receive Send Next-hops

1
(1, 0, 1)
(2, 2, 1),
(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)

[-,

2,

3]

2
(1, 2, 2),
(2, 0, 2),
(3, 7, 2)

(2, 2, 1),

(3, 1, 1),

(1, 1, 3),

(2, 7, 3)

(3, 3, 2)

[1,

-,

1]

3
(1, 1, 3),
(2, 7, 3),
(3, 0, 3)

(2, 2, 1),

(3, 1, 1),

(1, 2, 2),

(3, 7, 2)

(2, 3, 3)

[1,

1,

-]

2

1

3

2 1

7

Round 4

Receive Send Next-hops

1
(1, 0, 1)
(2, 2, 1),
(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

[-,

2,

3]

2
(1, 2, 2),
(2, 0, 2),
(3, 3, 2)

(2, 3, 3)

[1,

-,

1]

3
(1, 1, 3),
(2, 3, 3),
(3, 0, 3)

(3, 3, 2)

[1,

1,

-]

2

1

3

2 1

7

• The same algorithm applies to all destinations

• Each node announces distance to each dest

• I am distance d_A away from node A

• I am distance d_B away from node B

• I am distance d_C away from node C

• …

• Nodes are exchanging a vector of distances

Why not Spanning Tree Protocol? Why Distance “Vector”?

Distance Vector Protocol

21

• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

• Initially each switch X initializes its routing table to (X,0,-) and distance

infinity to all other destinations

• Switches announce their entire distance vectors (routing table w/0 next hops)

• Upon receiving a routing table from a node (say Z), each node X does:

• For each destination Y in the announcement (distance(Y, Z) = d):

• If current_distance_to_Y > d + cost of link to Z:

• update current_distance_to_Y = d + cost of link to Z

• update next_hop_to_destination = Z

• If shortest distance to any destination changed, send all neighbors your

distance vectors

• Protocol:
• Exchanging that routing information with neighbors

• What and when for exchanges

• RIP is a protocol that implements DV (IETF RFC 2080)

• Algorithm:

• How to use the information from your neighbors to update your

own routing tables?

Two Aspects to This Approach

Group Exercise:

Lets run the Protocol again on this example

(this time with distance vectors)

2

1

3

2 1

7

Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 infinity

distance next-hop
1 infinity
2 0 -
3 infinity

distance next-hop
1 infinity
2 infinity
3 0 -

Round 2

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 7 3

distance next-hop
1 1 1
2 7 2
3 0 -

Round 3

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -

Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -

• Algorithm:

• Nodes use Bellman-Ford to compute distances

• Protocol

• Nodes exchange distance vectors

• Update their own routing tables

• And exchange again…

• Details: when to exchange, what to exchange, etc….

From Algorithm to Protocol

• When do you send messages?

• When any of the distance changes

• What about when the cost of a link changes?

• Periodically, to ensure consistency between neighbors

• What information do you send?

• Could send entire vector

• Or just updated entries

• Do you send everyone the same information

• Consider the following slides

Other Aspects of Protocol

Three node network

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -

Three node network

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -

Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -

Round 2

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -

Round 3

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -

Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

COUNT-TO-INFINITY
problem!!!!

Count-to-infinity problem

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

Not just due to failures:
Can happen with changes in cost!

• Do not advertise a path back to the node that is the next hop on the path
• Called “split horizon”
• Telling them about your entry going through them

• Doesn’t tell them anything new

• Perhaps misleads them that you have an independent path

• Another solution: if you are using a next-hop’s path, then:

• Tell them not to use your path (by telling them cost of infinity)

• Called “poisoned reverse”

How Can You Fix This?

• Distance vector protocols can converge slowly

• While these corner cases are rare

• The resulting convergence delays can be significant

Convergence

• Link-State:
• Global flood: each router’s link-state (#ports)

• Send it once per link event, or periodically

• Distance Vector:
• Send longer vector (#dest) just to neighbors

• But might end up triggering their updates

• Send it every time DV changes (which can be often)

• Tradeoff:
• LS: Send it everywhere and be done in predictable time

• DV: Send locally, and perhaps iterate until convergence

Comparison of Scalability

End of Distance-vector Routing

Internet Addressing

Addressing so far

• Each node has a “name”

• We have so far worked only with names

• Assumed that forwarding/routing etc. done on names

• Today:

• Why do we need addresses?

• Why do we assign addresses the way we assign addresses?

Three requirements for addressing

• Scalable routing
• How must state must be stored to forward packets?

• How much state needs to be updated upon host arrival/departure?

• Efficient forwarding
• How quickly can one locate items in routing table?

• Host must be able to recognize packet is for them

Layer 2 (link layer): “Flat” Addressing

• Uses MAC address

• “Names”, remember? Used as identifier

• Unique identifiers hardcoded in the hardware

• No location information

• Local area networks route on these “flat” addresses

• Spanning Tree Protocol runs on switches and hosts
• Each switch stores a separate routing entry for each host
• End-hosts store nothing

• Upon receiving a packet, an end-host:

• Puts destination’s and its own MAC address in the header

• Forwards it to the switch it is connected to

• Destination is able to recognize the packet is for them using address

How does this meet our requirements?

• Scalable routing
• How much state to forward packets?

• One entry per host per switch

• How much state updated for each arrival/departure?

• One entry per host per switch

• Efficient forwarding
• Exact match lookup on MAC addresses (exact match is easy!)

• Host must be able to recognize the packet is for them
• MAC address does this perfectly

Conclusion: L2 addressing does not enable scalable routing

How would you scale L2?

• Suppose we want to design a much larger L2 network

• Must use MAC address as part of the address

• Only way host knows that the packet is for them

• But how would you enable scalable routing?
• Small #routing entries (less than one entry per host per switch)

• Small #updates (less than one update per switch per host change)

One possible Solution: Towards Internet-scale addressing

• Assign each end-host an addresses of the form — Switch:MAC

• Spanning Tree Protocol runs only on switches

• So, each switch has one entry per switch (rather than per host)

• Upon receiving a packet, an end-host:

• Puts destination’s and its own Switch:MAC address in the header

• Forwards it to the switch it is connected to

• Switches forward the packet using first part of the address

• Destination is able to recognize the packet is for them using second part
of the address

Layer 3: Hierarchical addressing

• Routing tables cannot have entry for each switch in the Internet

• Use addresses of the form — Network:Host

• Routers know how to reach all networks in the world

• Routing algorithms only announce “Network” part of the addresses

• Routing tables now store a next-hop for each “network”

• Forwarding:

• Routers ignore host part of the address

• When the packet reaches the right network

• Packet forwarded using Host part of the address

• Using Layer 2

• This was the original IP addressing scheme

What do I mean by “network”

• In the original IP addressing scheme …

• Network meant an L2 network

• Often referred to as a “subnet”

• There are too many of them now to scale

Aggregation

• Aggregation: single forwarding entry used for many individual hosts

• Example:

• In our scalable L2 solution: aggregate was switch

• In our scalable L3 solution: aggregate was network

• Advantages:

• Fewer entries and more stable

• Change of hosts do not change tables

• Don’t need to keep state on individual hosts

Hierarchical Structure

• The Internet is an “inter-network”

• Used to connect networks together, not hosts

• Forms a natural two-way hierarchy

• Wide Area Network (WAN) delivers to the right “network”

• Local Area Network (LAN) delivers to the right host

Hierarchical Addressing

• Can you think of an example?

• Addressing in the US mail

• Country

• City, Zip code

• Street

• House Number

• Occupant “Name”

???

IP addresses

• Unique 32 bit numbers associated with a host

• Use dotted-quad notation, e.g., 128.84.139.5

Country City, State Street, Number Occupant

(8 bits) (8 bits) (8 bits) (8 bits)

10000000 0-1010100 10001011 00000-101

128 84 139 5

Network Host

Original Addressing mechanism

• First eight bits: network address (/8)

• Slash notation indicates network address

• Last 24 bits: host address

• Assumed 256 networks were more than enough!!!

• Now we have millions!

Suppose we want to accommodate more networks

• We can allocate more bits to network address

• Problem?

• Fewer bits for host names

• What if some networks need more hosts?

Today’s Addressing: CIDR

• Classless Inter-domain Routing

• Idea: Flexible division between network and host addresses

• Prefix is network address

• Suffix is host address

• Example:
• 128.84.139.5/23 is a 23 bit prefix with:
• First 23 bits for network address

• Next 9 bits for host addresses: maximum 2^9 hosts

• Terminology: “Slash 23”

Example for CIDR Addressing

• 128.84.139.5/23 is a 23 bit prefix with 2^9 host addresses

10000000 0-1010100 10001011 00000-101

128 84 139 5

Network (23 bits) Host (9 bits)

Allocating addresses

• Internet Corporation for Assigned Names and Numbers (ICANN) …

• Allocates large blocks of addresses to Regional Internet Registries

• E.g., American Registry for Internet Names (ARIN) …

• That allocates blocks of addresses to Large Internet Service Providers (ISP)

• That allocate addresses to individuals and smaller institutions

• Fake example:

• ICANN -> ARIN -> AT&T -> Cornell -> CS -> Me

Allocating addresses: Fake example

• ICANN gives ARIN several /8s

• ARIN given AT&T one /8, 128.0/8
• Network prefix: 10000000

• AT&T gives Cornell one /16, 128.84/16
• Network prefix: 10000000 01010100

• Cornell gives CS one /24, 128.84.139/24
• Network prefix: 10000000 01010100 10001011

• CS given me a specific address 128.84.139.5
• Network prefix: 10000000 01010100 10001011 00000101

How does this meet our requirements?

• To understand this, we need to understand the routing on the Internet

• And to understand that, we need to understand the Internet

More next lecture!

