
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	10	
Fundamentals	of	Rou4ng	

Rou4ng	Protocols

Rachit	Agarwal



Announcements

• Please	submit	regrade	requests	for	Exam	1	before	11:59PM	on	Friday	

• Problem	Set	3	is	released	

• Reminder:	this	class	has	3	programming	assignments	

• Mostly	in	late	October	and	November

2



Goals	for	Today’s	Lecture

• Learning	about	Routing	Protocols	
• Link	State	(Global	view,	Local	computation)	

• Distance	Vector	(Local	view,	Local	computation)

3



Recap	from	last	lecture



• Easy	to	design	routing	algorithms	for	(spanning)	trees	

• Step	1:	Source	node	“floods”	its	packet	on	its	spanning	tree	links	

• Step	2:	Whenever	a	node	receives	a	packet:	

• Forwards	incoming	packet	out	to	all	links	other	than	the	one	
that	sent	the	packet	

• Amazing	properties:		

• No	routing	tables	needed!	
• No	packets	will	ever	loop.		
• At	least	(and	exactly)	one	packet	must	reach	the	destination	

• Assuming	no	failures

Recap:	Routing	using	Spanning	Trees



• Spanning	Tree	Protocol	used	in	switched	Ethernet	to	avoid	broadcast	storm	

• Can	be	used	for	routing	on	the	Internet	(via	“flooding”	on	spanning	tree)	

• Three	fundamental	issues:	

• Unnecessary	processing	at	end	hosts	(that	are	not	the	destination)	
• Higher	latency	
• Lower	available	bandwidth

Recap:	Why	do	we	need	the	network	layer?



• Routing	table:		
• Each	switch:	the	next	hop	for	each	destination	in	the	network	

• Routing	state:	collection	of	routing	tables	across	all	nodes	

• Two	questions:	
• How	can	we	verify	given	routing	state	is	valid?	
• How	can	we	produce	valid	routing	state?	

• Global	routing	state	valid	if	and	only	if:	
• There	are	no	dead	ends	(other	than	destination)	
• There	are	no	“persistent”	loops

Recap:	Routing	Tables



• Routing	tables	are	nothing	but	….	
• A	collection	of	(directed)	spanning	tree	
• One	for	each	destination	

• Routing	Protocols	
• Mechanisms	to	producing	valid	routing	tables	

• What	we	will	see:	

• “n”	spanning	tree	protocols	running	in	parallel

Recap:	The	right	way	to	think	about	Routing	Tables



Questions?



• Easy	to	avoid	dead	ends	

• Avoiding	loops	is	hard	

• The	key	difference	between	routing	protocols	is	how	they	avoid	loops!

Creating	Valid	Routing	State



• Create	Tree,	route	on	tree	
• E.g.,	Spanning	tree	protocol	(as	in	switched	Ethernet)	
• Good:	easy,	no	(persistent)	loops,	no	dead	ends	
• Not-so-good:	unnecessary	processing,	high	latency,	low	bandwidth	

• Obtain	a	global	view:	
• E.g.,	Link	state	

• Distributed	route	computation:	

• E.g.,	Distance	vector	
• E.g.,	Border	Gateway	Protocol

Four	flavors	of	protocols



Routing	Metrics

• Routing	goals:	compute	paths	with	minimum	X	

• X	=	number	of	“hops”	(nodes	in	the	middle)	

• X	=	latency	
• X	=	weight	
• X	=	failure	probability	
• …	

• Generally	assume	every	link	has	“cost”	associated	with	it		

• We	want	to	minimize	the	cost	of	the	entire	path	

• We	will	focus	on	a	subset	of	properties	X,	where:	

• Cost	of	a	path	=	sum	of	costs	of	individual	links/nodes	on	the	path	
• E.g.,	number	of	hops	and	latency



#1:	Create	a	Tree



• Remove	enough	links	to	create	a	tree	containing	all	nodes	

• Sounds	familiar?	Spanning	trees!	

• If	the	topology	has	no	loops,	then	just	make	sure	not	sending	packets	
back	from	where	they	came	

• That	causes	an	immediate	loop	

• Therefore,	if	no	loops	in	topology	and	no	formation	of	immediate	loops	
ensures	valid	routing	

• However…	three	challenges	
• Unnecessary	host	resources	used	to	process	packets	
• High	latency	
• Low	bandwidth	(utilization)

#1:	Create	a	Tree	Out	of	Topology



Global	view



Two	Aspects	of	Global	View	Method

• Protocol:	What	we	focus	on	today	

• Where	to	create	global	view	

• How	to	create	global	view	
• Disseminating	route	computation	(if	necessary)	

• When	to	run	route	computation	

• Algorithm:	computing	loop-free	paths	on	graph	

• Straightforward	to	compute	lowest	cost	paths	

• Using	Dijkstra’s	algorithm	(please	study;	algorithms	course)	

• We	won’t	spend	time	on	this



Where	to	create	global	view?

• One	option:	Central	server	
• Collects	a	global	view	
• Computes	the	routing	table	for	each	node	

• “Installs”	routing	tables	at	each	node	
• Software-defined	Networks:	later	in	course	

• Second	option:	At	each	router	
• Each	router	collects	a	global	view	
• Computes	its	own	routing	table	using	Link-state	protocol	

• Link-state	routing	protocol	
• OSPF	is	a	specific	implementation	of	link-state	protocol	

• IETF	RFC	2328	(IPv4)	or	5340	(IPv6)



Overview	of	Link-State	Routing

• Every	router	knows	its	local	“link	state”	
• Knows	state	of	links	to	neighbors	
• Up/down,	and	associated	cost	

• A	router	floods	its	link	state	to	all	other	routers		
• Uses	a	special	packet	—	Link	State	Announcements	(LSA)	

• Announcement	is	delivered	to	all	nodes	(next	slide)	

• Hence,	every	router	learns	the	entire	network	graph	

• Runs	route	computation	locally	

• Computing	least	cost	paths	from	them	to	all	other	nodes	

• E.g.,	using	Dijkstra’s	algorithm



How	does	Flooding	Work?

• “Link	state	announcement”	(LSA)	arrives	on	a	link	at	a	router	

• That	router:	
• Remembers	the	packet	

• Forwards	the	packet	out	all	other	links	
• Does	not	send	it	out	the	incoming	link	

• Why?	

• If	a	previously	received	announcement	arrives	again…	

• Router	drops	it	(no	need	to	forward	again)



Link-State	Routing

S1

S2

S3

S7
S5

S6

S4

Host A

Host B

Host C

Host DHost E



Each	Node	Then	has	a	Global	View

S1

S2

S3

S7
S5

S6

S4

Host A

Host B

Host C

Host DHost E



When	to	Initiate	Flooding	of	announcements?

• Topology	change	
• Link	failures	
• Link	recovery	

• Configuration	change	
• Link	cost	change	(why	would	one	change	link	cost?)	

• Periodically	
• Refresh	the	link-state	information	

• Typically	(say)	30	minutes	

• Corrects	for	possible	corruption	of	data



Making	Floods	Reliable

• Reliable	Flooding	
• Ensure	all	nodes	receive	same	link	state	announcements	

• No	announcements	dropped	

• Ensure	all	nodes	use	the	latest	version	

• Suppose	we	can	implement	reliable	flooding.	How	can	it	still	fail?	

• Can	you	ever	have	loops	with	link-state	routing?	

• Again:	Can	you	ever	have	loops	with	link-state	routing?



Are	Loops	Still	Possible?

5
5

5 3
5

51

1

A

D E

F

CB

5
5

5 3
5

5

1

A

D E

F

CB

A and D think this is the path to C

E-C link fails, but D doesn’t know yet

E thinks that this the path to C

E reaches C via D, D reaches C via E 
Loop!



Transient	Disruptions

5
5

5 3
5

5

1

A

D E

F

CB

5
5

5 3
5

5

1

A

D E

F

CB

• Inconsistent	link-state	views	
• Some	routers	know	about	failure	before	others	

• The	shortest	paths	are	no	longer	consistent	
• Can	cause	transient	forwarding	loops	

• Transient	loops	are	still	a	problem!



Convergence

• Eventually,	all	routers	have	consistent	routing	information		

• E.g.,	all	nodes	having	the	same	link-state	database	

• Here,	eventually	means	“if	nothing	changes	after	a	while”	

• Forwarding	is	consistent	after	convergence	
• All	nodes	have	the	same	link-state	database	

• All	nodes	forward	packets	on	same	paths	

• But	while	still	converging,	bad	things	can	happen



Time	to	Reach	Convergence

• Sources	of	convergence	delay?		
• Time	to	detect	failure	

• Time	to	flood	link-state	information	(~longest	RTT)	

• Time	to	recompute	forwarding	tables		

• Performance	problems	during	convergence	period?	

• Dead	ends	
• Looping	packets	
• And	some	more	we’ll	see	later	….



Link	State	is	Conceptually	Simple

• Everyone	floods	links	information	

• Everyone	then	knows	graph	of	the	network	

• Everyone	independently	computes	paths	on	the	graph	

• All	the	complexity	is	in	the	details



Local	view,	distributed	route	computation



• Often	getting	a	global	view	of	the	network	is	infeasible	
• Distributed	algorithms	to	compute	feasible	route	

• Approach	A:	Finding	optimal	route	for	maximizing/minimizing	a	metric	

• Approach	B:	Finding	feasible	route	via	exchanging	paths	among	switches

#3:	Distributed	Route	Computation



• Each	node	computes	the	outgoing	links	(for	each	destination)	based	on:	

• Local	link	costs	
• Information	advertised	by	neighbors	

• Algorithms	differ	in	what	these	exchanges	contain	

• Distance-vector:	just	the	distance	(and	next	hop)	to	each	destination	
• Path	vector:	the	entire	path	to	each	destination	

• We	will	focus	on	distance-vector	for	now

Distributed	Computation	of	Routes



Recall:	Routing	Tables	=	Collection	of	Spanning	Trees

32

• Can	we	use	the	spanning	tree	protocol	(with	modifications)?	

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors



Distance	vector:	a	collection	of	“n”	STP	in	parallel		

Lets	run	the	Protocol	on	this	example	

(destination	=	1)



Round	1

Receive Send

1 (1,	0,	1)

2

3

4

5

6

7



Round	2
Receive Send

1	(1,	0,	1)

2

3 (1,	0,	1) (1,	1,	3)

4

5 (1,	0,	1) (1,	1,	5)

6 (1,	0,	1) (1,	1,	6)

7



Round	3
Receive Send

1	(1,	0,	1)
(1,	1,	3),	(1,	1,	5),	

(1,	1,	6)

2 (1,	1,	3),	(1,	1,	6) (1,	2,	2)

3	(1,	1,	3)

4

5	(1,	1,	5) (1,	1,	6)

6	(1,	1,	6) (1,	1,	5)

7



Round	4
Receive Send

1	(1,	0,	1)

2	(1,	2,	2)

3	(1,	1,	3) (1,	2,	2)

4 (1,	2,	2) (1,	3,	4)

5	(1,	1,	5)

6	(1,	1,	6) (1,	2,	2)

7 (1,	2,	2) (1,	3,	7)



Round	5
Receive Send

1	(1,	0,	1)

2	(1,	2,	2) (1,	3,	4),	(1,	3,	7)

3	(1,	1,	3)

4	(1,	3,	4) (1,	3,	7)

5	(1,	1,	5)

6	(1,	1,	6)

7	(1,	3,	7) (1,	3,	4)



• The	same	protocol/algorithm	applies	to	all	destinations		

• Each	node	announces	distance	to	each	dest	
• I	am	4	hops	away	from	node	A	

• I	am	6	hops	away	from	node	B	

• I	am	3	hops	away	from	node	C	

• …	

• Nodes	are	exchanging	a	vector	of	distances

Why	not	Spanning	Tree	Protocol?	Why	Distance	“Vector”?



Towards	Distance	Vector	Protocol	(with	no	failures)

40

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switch	X	updates	its	view	
• Upon	receiving	message	(Y,d,Z)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	destination	=	Y	

• Switch	X	computes	its	shortest	distance	from	the	root	destination	

• If	current_distance_to_Y	>	d	+	cost	of	link	to	Z:		
• update	current_distance_to_Y	=	d	+	cost	of	link	to	Z	

• If	root	changed	OR	shortest	distance	to	the	root	destination	changed,	
send	all	neighbors	updated	message	(Y,	current_distance_to_Y,	X)



Lets	run	the	Protocol	on	this	example

2

1

3

2 1

7



Round	1

Receive Send

1 (1,	0,	1)

2 (2,	0,	2)

3 (3,	0,	3)

2

1

3

2 1

7



Round	2

Receive Send

1		
(1,	0,	1)

(2,	0,	2),		
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1)

2	
(2,	0,	2)

(1,	0,	1),	
(3,	0,	3)

(1,	2,	2),	
(3,	7,	2)

3	
(3,	0,	3)

(1,	0,	1),	
(2,	0,	2)

(1,	1,	3),	
(2,	7,	3)

2

1

3

2 1

7



Round	3

Receive Send

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(1,	2,	2),	
(3,	7,	2),		
(1,	1,	3),	
(2,	7,	3)

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	7,	2)

(2,	2,	1),	
(3,	1,	1),	
(1,	1,	3),	
(2,	7,	3)

(3,	3,	2)

3	
(1,	1,	3),	
(2,	7,	3),	
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1),	
(1,	2,	2),	
(3,	7,	2)

(2,	3,	3)

2

1

3

2 1

7



Round	4

Receive Send

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(3,	3,	2),	
(2,	3,	3)

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	3,	2)

(2,	3,	3)

3	
(1,	1,	3),	
(2,	3,	3),	
(3,	0,	3)

(3,	3,	2)

2

1

3

2 1

7



Towards	Distance-vector	protocol	with	next-hops	(no	failures)

46

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switch	X	updates	its	view	
• Upon	receiving	message	(Y,d,Z)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	destination	=	Y	

• Switch	X	computes	its	shortest	distance	from	the	root	destination	

• If	current_distance_to_Y	>	d	+	cost	of	link	to	Z:		
• update	current_distance_to_Y	=	d	
• update	next_hop_to_destination	=	Z	

• If	root	changed	OR	shortest	distance	to	the	root	destination	changed,	
send	all	neighbors	updated	message	(Y,	current_distance_to_Y,	X)



Lets	run	the	Protocol	on	this	example	

(this	time	with	next-hops)

2

1

3

2 1

7



Round	1

Receive Send Next-hops

1 (1,	0,	1) [-]

2 (2,	0,	2) [-]

3 (3,	0,	3) [-]

2

1

3

2 1

7



Round	2

Receive Send Next-hops

1		
(1,	0,	1)

(2,	0,	2),		
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1)

[-,	
2,	
3]

2	
(2,	0,	2)

(1,	0,	1),	
(3,	0,	3)

(1,	2,	2),	
(3,	7,	2)

[1,	
-,	
3]

3	
(3,	0,	3)

(1,	0,	1),	
(2,	0,	2)

(1,	1,	3),	
(2,	7,	3)

[1,	
2,	
-]

2

1

3

2 1

7



Round	3

Receive Send Next-hops

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(1,	2,	2),	
(3,	7,	2),		
(1,	1,	3),	
(2,	7,	3)

[-,	
2,	
3]

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	7,	2)

(2,	2,	1),	
(3,	1,	1),	
(1,	1,	3),	
(2,	7,	3)

(3,	3,	2)
[1,	
-,	
1]

3	
(1,	1,	3),	
(2,	7,	3),	
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1),	
(1,	2,	2),	
(3,	7,	2)

(2,	3,	3)
[1,	
1,	
-]

2

1

3

2 1

7



Round	4

Receive Send Next-hops

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(3,	3,	2),	
(2,	3,	3)

[-,	
2,	
3]

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	3,	2)

(2,	3,	3)
[1,	
-,	
1]

3	
(1,	1,	3),	
(2,	3,	3),	
(3,	0,	3)

(3,	3,	2)
[1,	
1,	
-]

2

1

3

2 1

7



Routing	tables Next-hops

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

[-,	
2,	
3]

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	3,	2)

[1,	
-,	
1]

3	
(1,	1,	3),	
(2,	3,	3),	
(3,	0,	3)

[1,	
1,	
-]

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 3 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -



• The	same	algorithm	applies	to	all	destinations		

• Each	node	announces	distance	to	each	dest	
• I	am	distance	d_A	away	from	node	A	

• I	am	distance	d_B	away	from	node	B	

• I	am	distance	d_C	away	from	node	C	

• …	

• Nodes	are	exchanging	a	vector	of	distances

Why	not	Spanning	Tree	Protocol?	Why	Distance	“Vector”?



Distance	Vector	Protocol

54

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	initializes	its	routing	table	to	(X,0,-)	and	distance	
infinity	to	all	other	destinations	

• Switches	announce	their	entire	distance	vectors	(routing	table	w/0	next	hops)	

• Upon	receiving	a	routing	table	from	a	node	(say	X),	each	node	does:	

• For	each	destination	Y	in	the	announcement	(distance(X,	Y)	=	d):	

• If	current_distance_to_Y	>	d	+	cost	of	link	to	X:		
• update	current_distance_to_Y	=	d	
• update	next_hop_to_destination	=	X	

• If	shortest	distance	to	any	destination	changed,	send	all	neighbors	your	
distance	vectors


