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Goals for Today’s Lecture

• Recap Spanning Tree Protocol 

• Why do we need network layer?  
• Why not just use switched Ethernet across the Internet? 

• Fundamentals of network layer 
• Routing tables 
• The right way to think about routing tables 

• But, before that …..
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Exam 1 Updates

• I am SO proud of you all! 

• Full marks 50/50: ~12% of the class 
• More than 45/50: ~28% of the class 
• More than 40/50: ~38% of the class 

• Absolutely amazing! 

• Mean: ~36 

• Median: ~36.5 

• Std. Dev.: ~11
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Exam 1 Discussions

• I am here for you. 

• If you would like to go through your exam copy 
• I will make time for each and every one of you 

• To discuss how/where we can improve 
• Send an email to cs4450-prof@cornell.edu to set up a meeting 
• Please send me your availability

4

mailto:cs4450-prof@cornell.edu


Recap of Link Layer so far
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• Traditional Link Layer: Broadcast Ethernet 

• CSMA/CD 
• Random access on a broadcast channel 
• Exponential Backoff 

• Why Frames? 
• To incorporate sentinel bits for identifying frame start/end 
• To incorporate link layer source and destination names 
• To incorporate CRC for checking correctness of received frames 

• Modern Link Layer: Switched Ethernet 
• Why? Scalability limits of traditional Ethernet 

• Why? Detecting collisions on a broadcast channel

Recap: Link layer
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• Hosts connect to broadcast (Ethernet) buses 
• Each bus has a maximum length and/or minimum frame size 

• Multiple broadcast buses connected via relays/switches 
• Can now scale to arbitrarily large lengths  

• How to transfer data across broadcast buses connected via relays 
• Cannot simply forward the data across relays 
• The topology may have loops 
• Recall: broadcast storm problem! 

• Core idea in switched Ethernet: Spanning Tree Protocol 
• Switches create a Spanning Tree 
• Using THE Spanning Tree Protocol

Recap: Switched Ethernet
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Recap: Spanning Tree definition

• Subgraph that includes all vertices but contains no cycles 
• Links not in the spanning tree are not used in forwarding frames
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Recap: Spanning Tree Protocol
• Messages (Y,d,X) 

• Proposing root Y; from node X; advertising a distance d to Y 

• Initially each switch proposes itself as the root 
• that is, switch X announces (X,0,X) to its neighbors 

• At each switch Z: 
WHENEVER a message (Y,d,X) is received from X: 

• IF Y’s id < current root 
• THEN set root = Y; next-hop = X 

• IF Shortest distance to root > d + distance_from_X 
• THEN set shortest-distance-to-root = d + distance_from_X 

• IF root changed OR shortest distance to the root changed: 
• Send all neighbors message (Y, shortest-distance-to-root, Z)
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Lets run the Spanning Tree Protocol on this example 

(assume all links have “distance” 1)



Round 1

Receive Send Next-hop

1 (1, 0, 1) 1

2 (2, 0, 2) 2

3 (3, 0, 3) 3

4 (4, 0, 4) 4

5 (5, 0, 5) 5

6 (6, 0, 6) 6

7 (7, 0, 7) 7



Round 2
Receive Send Next 

hop

1 (1, 0, 1) (3, 0, 3), (5, 0, 5) 1

2 (2, 0, 2) (3, 0, 3), (4, 0, 4), 
(6, 0, 6), (7, 0, 7) 2

3 (3, 0, 3) (1, 0, 1), (2, 0, 2) (1, 1, 3) 1

4 (4, 0, 4) (2, 0, 2), (7, 0, 7) (2, 1, 4) 2

5 (5, 0, 5) (1, 0, 1), (6, 0, 6) (1, 1, 5) 1

6 (6, 0, 6) (2, 0, 2), (5, 0, 5) (2, 1, 6) 2

7 (7, 0, 7) (2, 0, 2), (4, 0, 4) (2, 1, 7) 2



Round 3
Receive Send Next hop

1 (1, 1, 3), (1, 1, 5) 1

2 (1, 1, 3), (2, 1, 4), 
(2, 1, 6), (2, 1, 7) (1, 2, 2) 3

3 (1, 1, 3) 1

4 (2, 1, 4) (2, 1, 7) 2

5 (1, 1, 5) (2, 1, 6) 1

6 (2, 1, 6) (1, 1, 5) (1, 2, 6) 5

7 (2, 1, 7) (2, 1, 4) 2



Round 4
Receive Send Next hop

1 1

2 (1, 2, 2) (1, 2, 6) 3

3 (1, 2, 2) 1

4 (1, 2, 2) (1, 3, 4) 2

5 (1, 2, 6) 1

6 (1, 2, 6) (1, 2, 2) 5

7 (1, 2, 2) (1, 3, 7) 2



Round 5
Receive Send Next 

hop

1 1

2 (1, 3, 4), (1, 3, 7) 3

3 1

4 (1, 3, 4) (1, 3, 7) 2

5 1

6 5

7 (1, 3, 7) (1, 3, 4) 2



After Round 5: We have our Spanning Tree

• 3-1 
• 5-1 
• 6-1 
• 2-3 
• 4-2 
• 7-2
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• Protocol must react to failures 
• Failure of the root node 
• Failure of switches and links 

• Root node sends periodic announcement messages 
• Few possible implementations, but this is simple to understand 
• Other switches continue forwarding messages 

• Detecting failures through timeout (soft state) 
• If no word from root, time out and send a (Y, 0, Y) message to all 

neighbors (in the graph)! 

• If multiple messages with a new root received, send message (Y, d, X) 
to the neighbor sending the message
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Spanning Tree Protocol ++ (incorporating failures)



Example: Suppose link 2-4 fails

• 4 will send (4, 0, 4) to all its neighbors 
• 4 will stop receiving announcement messages from the root 
• Why? 

• At some point, 7 will respond with (1, 3, 7) 

• 4 will now update to (1, 4, 4) and send update message  

• New spanning tree!
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Questions?
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The end of Link Layer …. 

And the beginning of network layer :-D

Built on top of 
reliable delivery

Built on top of best-
effort forwarding

Built on top of 
best-effort routing

Built on top of 
physical bit transfer



• Why not just use spanning trees across the entire network? 

• Easy to design routing algorithms for (spanning) trees 
• Nodes can “flood” packet to all other nodes

Why do we need a network layer?



• Sends packet to every node in the 
network 

• Step 1: Ignore the links not belonging 
to the Spanning Tree 

• Step 2: Originating node sends “flood” 
packet out every link (on spanning 
tree) 

• Step 3: Send incoming packet out to 
all links other than the one that sent 
the packet

Flooding on a Spanning Tree



Flooding Example

Source

Desmnamon

1

3

2

7

6

5

4



Flooding Example

Source

Destination

1

3

2

7

6

5

4

Eventually all nodes are covered

One copy of packet delivered to des:na:on

1

2

4

7

5

6



• Easy to design routing algorithms for trees 
• Nodes can “flood” packet to all other nodes 

• Amazing properties:  
• No routing tables needed! 
• No packets will ever loop.  
• At least (and exactly) one packet must reach the destination 

• Assuming no failures

Routing via Flooding on Spanning Tree …



Three fundamental issues!

Source

Desmnamon

1

3

2

7

6

5

4

1

2

4

7

5

6

Issue 1: Each host has to do unnecessary packet processing!  
(to decide whether the packet is des:ned to the host)



Source

Desmnamon

1

3

2

7

6

5

4

Three fundamental issues!

Issue 2: Higher latency!  
(The packets unnecessarily traverse much longer paths)



Source

Desmnamon

1

3

2

7

6

5

4

Three fundamental issues!

Issue 3: Lower bandwidth availability!  
(2-6 and 3-1 packets unnecessarily have to share bandwidth)



Questions?



• Network layer performs “routing” of packets to alleviate these issues  

• Uses routing tables 

• Lets understand routing tables first

Why do we need a network layer?



What path will a packet take from Cornell to MIT?

• Routing tables allow finding path from source to destination

Routing Packets via Routing Tables

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3



• Finding path for a packet from source to destination

Routing Packets via Routing Tables

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3

How to specify whether the packet should 
take Path 1 or Path 2?



Each Switch stores a table indica:ng the next hop for corresponding 
des:na:on of a packet (called a rou:ng table)

• Suppose packet follows Path 1: Cornell - S#1 - S#3 - MIT

Routing Table

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP

CORNELL L1

MIT L3

HARVARD L4

DESTINATION NEXT HOP

CORNELL L2

MIT L5

HARVARD L5

DESTINATION NEXT HOP

CORNELL L5

MIT L6

HARVARD L3



See something interes:ng?

• Lets focus on one destination - MIT

Routing Table: The right way to think about them

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP

CORNELL L1

MIT L3

HARVARD L4

DESTINATION NEXT HOP

CORNELL L2

MIT L5

HARVARD L5

DESTINATION NEXT HOP

CORNELL L5

MIT L6

HARVARD L3



Rou:ng table entries for a par:cular des:na:on form a 
(directed) spanning tree with that des:na:on as the root!!!!

• Lets focus on one destination - MIT

Routing Table: The right way to think about them

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP

CORNELL L1

MIT L3

HARVARD L4

DESTINATION NEXT HOP

CORNELL L2

MIT L5

HARVARD L5

DESTINATION NEXT HOP

CORNELL L5

MIT L6

HARVARD L3



• Routing tables are nothing but …. 
• A collection of (directed) spanning tree 
• One for each destination 

• Routing Protocols 
• “n” spanning tree protocols running in parallel

Routing Table: The right way to think about them



• Global routing state is valid if: 
• it always results in deliver packets to their destinations 

• Goal of Routing Protocols 
• Compute a valid state 
• But how to tell if a routing state is valid?… 
• Think about it, what could make routing incorrect?

“Valid Routing Tables” (routing state)



• Global routing state valid if and only if: 
• There are no dead ends (other than destination) 
• There are no loops 

• A dead end is when there is no outgoing link 
• A packet arrives, but .. 

• the routing table does not have an outgoing link 
• And that node is not the destination 

• A loop is when a packet cycles around the same set of nodes forever

Validity of a Routing State



• Suppose packet wants to go from Cornell to MIT using given state:

Example: Routing with Dead Ends

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP

CORNELL L1

MIT L2

HARVARD L4

DESTINATION NEXT HOP

CORNELL L2

HARVARD L5

DESTINATION NEXT HOP

CORNELL L5

MIT L6

HARVARD L3

No forwarding decision for MIT!

Dead End!
Packet never reaches MIT



Example: Routing with Loops

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP

CORNELL L1

MIT L3

HARVARD L4

DESTINATION NEXT HOP

CORNELL L2

MIT L2

HARVARD L5

DESTINATION NEXT HOP

CORNELL L5

MIT L5

HARVARD L3

• Suppose packet wants to go from Cornell to MIT using given state:

Loop!
Packet never reaches MIT



• How can we verify given routing state is valid? 

• How can we produce valid routing state?

Two Questions



• Check validity of routing state for one destination at a time… 

• For each node: 
• Mark the outgoing link with arrow for the required destination 
• There can only be one at each node 

• Eliminate all links with no arrows 

• Look what’s left. State is valid if and only if  
• Remaining graph is a spanning tree with destination as sink 
• Why is this true? 

• Tree -> No loops 
• Spanning (tree) -> No dead ends

Checking Validity of a Routing State



Example 1



Example 1: Pick Destination



Example 1: Put Arrows on Outgoing Ports



Example 1: Remove unused Links

Leaves Spanning Tree: Valid



Example 2:



Example 2:

Is this valid?



Example 3:



Example 3:

Is this valid?



• Simple to check validity of routing state for a particular destination 

• Dead ends: nodes without arrows 

• Loops: obvious, disconnected from destination and rest of the graph

Checking Validity of a Routing State



• How can we verify given routing state is valid? 

• How can we produce valid routing state?

Two Questions



• Easy to avoid dead ends 

• Avoiding loops is hard 

• The key difference between routing protocols is how they avoid loops! 

• Try to think a loop avoidance design for five minutes

Creating Valid Routing State



• Remove enough links to create a tree containing all nodes 

• Sounds familiar? Spanning trees! 

• If the topology has no loops, then just make sure not sending packets 
back from where they came 

• That causes an immediate loop 

• Therefore, if no loops in topology and no formation of immediate loops 
ensures valid routing 

• However… three challenges 
• Unnecessary host resources used to process packets 
• High latency 
• Low bandwidth (utilization)

#1: Create Tree Out of Topology



• A global view of the network makes computing paths without loops easy 
• Many graph algorithms for computing loop-free paths 
• For e.g., Dijkstra’s Algorithm 

• Getting the global view of network is challenging!

#2: Obtain a Global View



• Often getting a global view of the network is infeasible 
• Distributed algorithms to compute feasible route 

• Approach A: Finding optimal route for maximizing/minimizing a metric 

• Approach B: Finding feasible route via exchanging paths among switches

#3: Distributed Route Computation



Welcome to the Network Layer!

• THE functionality: delivering the data 

• THE protocol: Internet Protocol (IP) 
• To achieve its functionality (delivering the data), IP protocol has 

three responsibilities 

• Addressing (next lecture) 
• Encapsulating data into packets (next lecture) 
• Routing (using a variety of protocols; several lectures)



Next lecture!



Spanning Tree Protocol (++ Incorporating distances)
• Messages (Y,d,X) 

• Proposing root Y; from node X; advertising a distance d to Y 

• Initially each switch proposes itself as the root 
• that is, switch X announces (X,0,X) to its neighbors 

• Switches update their view; each switch Z: 
• Upon receiving message (Y,d,X) from X, check Y’s id 
• If Y’s id < current root: set root = Y 
• Set next-hop = X 

• Switches compute their distance from the root; each switch Z: 
• Shortest distance to root = d + distanceTo(X) 

• If root changed OR shortest distance to the root changed: 
• switch Z sends neighbors updated message (Y, d+distanceTo(X), Z)
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