

Computer Networks: Architecture and Protocols

Lecture 7: Link Layer CSMA/CD "Why" Frames "Why" Switched Ethernet

Rachit Agarwal

Announcements

- Problem set 2 solutions out today
 - First four questions included in the first exam
- Practice prelim released today
 - Hard to "closely" reflect the actual exam, but should be close
 - Solutions released by Friday

Goals for Today's Lecture

- Dive deep into Link layer design
 - Finish the core link layer protocol: CSMA/CD
 - Why Frames? Implementing Link Layer on top of Physical Layer
 - Why Switched Ethernet? Understanding scalability problems
- Next lecture: THE Spanning Tree Protocol

Recap from last lecture

4

Recap: Data Link Layer

- Communication Medium
 - Point-to-point
 - The high-level ideas discussed so far were for point-to-point
 - Broadcast
 - Original design of Link layer protocols
 - More recent versions have moved to point-to-point
 - Today, we will discuss why so!
- Network Adapters (e.g., NIC network interface card)
 - The hardware that connects a machine to the network
 - Has a "name" MAC (Medium access control) address

Recap: Sharing a broadcast channel

- Context: a shared broadcast channel
 - Must avoid/handle having multiple sources speaking at once
 - Otherwise collisions lead to garbled data
 - Need distributed algorithm for sharing channel
 - Algorithm determines when and which source can transmit

Questions?

Techniques for sharing a broadcast channel

- Context: a shared broadcast channel
 - Must avoid/handle having multiple sources speaking at once
 - Otherwise collisions lead to garbled data
 - Need distributed algorithm for sharing channel
 - Algorithm determines when and which source can transmit
- Three classes of techniques
 - Frequency-division multiple access: coordinated sharing in space
 - Time-division multiple access: coordinated sharing in time
 - Random access: uncoordinated sharing
 - Detect collisions, and if needed, recover from collisions
 - Carrier Sense Multiple Access (CSMA)

Frequency-Division Multiple Access (FDMA)

- Frequency sharing
 - Divide the channel into frequencies
 - Every source is assigned a subset of frequencies
 - And transmits data only on its assigned frequency
- Goods: no collisions
- Not-so-good:
 - A source may have nothing to send (frequency wasted)
 - Interference may cause disruption
 - Hard to implement for wired networks
- Used in many wireless networks
 - E.g., radio

Time-Division Multiple Access (TDMA)

Time sharing

- Divide time into **slots**
- Divide data into **frames**
 - Such that a frame can be transmitted in one slot
- Every source is assigned a subset of slots
 - And transmits a frame only in its assigned slot
- Goods: no collisions
- Not-so-good: Underutilization of resources
 - During a slot, a source may have nothing to send
 - When the source has something to send, wait for its slot

Random Access

- Bob Metcalfe:
 - Xerox PARC
 - Visits Hawaii, and gets the idea
 - Shared wired medium

Life lesson:

If you want to invent great things, go to Hawaii :-)

Link Layer (Media Access Control, or MAC) Protocol

When source has a frame to send

- Transmit at full bandwidth
- No a priori coordination among nodes
- Two or more transmitting sources => collision
 - Frame lost
- Link-layer protocol specifies:
 - How to detect collision
 - How to recover from collisions

CSMA (Carrier Sense Multiple Access)

- CSMA: listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy: defer transmission
- Human analogy: don't interrupt others!
- Does this eliminate all collisions?
 - No, because of nonzero propagation delay
- Solution:
 - Include a Collision Detection (CD) mechanism
 - If a collision detected
 - Retransmit

CSMA/CD (Carrier Sense Multiple Access, Collision Detection)

- CSMA/CD: carrier sensing
 - Collisions detected within short time
 - Colliding transmissions aborted, reducing wastage
- Collision detection easy in wired (broadcast) LANs
 - Compare transmitted and received signals
- Collision detection difficult in wireless LANs

CSMA/CD

Once a collision is detected ...

- When should the frame be retransmitted?
- Immediately?
 - Every NIC would start sending immediately
 - Collision again!
- Take turns?
 - Back to time division multiplexing
 - Problem?
 - Underutilization

CSMA/CD in one slide!

- Carrier Sense: continuously listen to the channel
 - If idle: start transmitting
 - If busy: wait until idle
- Collision Detection: listen while transmitting
 - No collision: transmission complete
 - Collision: abort transmission
- When to retransmit?: exponential back off
 - After collision, transmit after "waiting time"
 - After k collisions, choose "waiting time" from {0, ..., 2^k-1)
 - Exponentially increasing waiting times
 - But also, exponentially larger success probability

CSMA/CD—Exponential Back-off: An example

Success with Probability = 0.5

Questions?

Group Exercise:

What is the success probability in attempt 3?

Answer: 0.75

Why Frames?

(Layering: Link Layer on top of Physical Layer)

Building Link Layer on top of Physical Layer

- Physical layer sends/receives bits on a link, and forwards to link layer
- View at the destination side physical layer: 010101100111111011110111100101000111
- Challenge: how to take the above bits and convert to: 01010110011111101111101111100101000111
- Problem: how does the link layer separate data into correct "chunks"?
 - Chunks belonging to different applications
- Data link layer interfaces with physical layer using frames
 - Implemented by the network adaptor
 - Finally: What are these frames?

Frames

Identifying start/end of frames: Sentinel Bits

- Delineate frame with special "sentinel" bit pattern
 - e.g., 01111110 -> start, 01111111 -> end

01111110	Frame contents	01111111
----------	----------------	----------

- Problem: what if the sentinel occurs within the frame?
- Solution: bit stuffing
 - Sender always inserts a **0** after five **1**s in the frame content
 - Receiver always removes a **0** appearing after five **1**s

When Receiver sees five 1s...

- If next bit is 0, remove it, and begin counting again
 - Because this must be a stuffed bit
 - we can't be at beginning/end of frame (those had six/seven 1s)
- If next bit is 1 (i.e., we have six 1s) then:
 - If following bit is 0, this is the start of the frame
 - Because the receiver has seen 01111110
 - If following bit is 1, this is the end of the frame
 - Because the receiver has seen 01111111

Example: Sentinel Bits

- Original data, including start/end of frame:
 0111110011111011111011111001011111111
- Sender rule: five 1s -> insert a 0
- After bit stuffing at the sender:
 01111110011111010111110011111100
- Receiver rule: five 1s and next bit 0 -> remove 0
 011111100111111011110111110

Ethernet "Frames"

- Preamble:
 - 7 bytes for clock synchronization
 - 1 byte to indicate start of the frame
- Names: 6 + 6 bytes (MAC names/addresses)
- Protocol type: 2 bytes, indicating higher layer protocol (e.g., IP)
- Data payload: max 1500 bytes, minimum 46 bytes
- CRC: 4 bytes for error detection

What about source/destination Addresses?

- Frames are at Layer-2
 - Thus, use Layer-2 addresses (MAC names/addresses)
- MAC address
 - Numerical address associated with the network adapter
 - Flat namespace of 6 bytes (e.g., 00-15-C5-49-04-A9 in HEX)
 - Unique, hard coded in the adapter when it is built
- Hierarchical Allocation
 - Blocks: assigned to vendors (e.g., Dell) by IEEE
 - First 24 bits (e.g., 00-15-C5-**-**)
 - Adapter: assigned by the vendor from its block
 - Last 24 bits

Questions?

Putting it all together (Traditional Ethernet)

Traditional Ethernet

- (Source) Link layer receives data from the network layer (more later)
- (Source) Link layer divides data into frames
 - How does it know source/destination MAC names?
 - Source name is easy ... destination name is tricky (more later)
- (Source) Link layer passes the frame to physical layer
 - Frames up the frames (using sentinel bits)
 - And broadcasts on the broadcast Ethernet
- (EACH) physical layer regenerates the frame...
 - And sends it up to the (destination) link layer
 - Which sends the data to the network layer If and only if:
 - destination name matches the receiver's MAC name
 - Or, the destination name is the broadcast address (FF:FF:FF:FF:FF:FF)

Traditional Ethernet

- Ethernet is "plug-n'play"
 - A new host plugs into the Ethernet is good to go
 - No configuration by users or network operators
 - Broadcast as a means of bootstrapping communication

Performance of CSMA/CD

- Time spent transmitting a frame (collision)
 - Proportional to distance d; why?

Time spent transmitting a frame (no collision)

- Frame length p divided by bandwidth b
- Rough estimate for efficiency (K some constant)

$$E \sim \frac{\frac{p}{b}}{\frac{p}{b} + Kd}$$

- Observations:
 - For large frames AND small distances, E ~ 1
 - Right frame length depends on b, K, d
 - As bandwidth increases, E decreases
 - That is why high-speed LANs are switched

35

Questions?