

Computer Networks: Architecture and Protocols

Lecture 6 Data Link Layer

Announcements

- Exam 1 on 09/21
 - Material: everything covered until Wed lecture
 - Slides, Problem set 1, Problem set 2 (up to Question 4)
 - Infinite time, should be doable in ~90 minutes
 - Open-notes, open-book, open-Internet, open-everything, except...
 - Talking to any human or alien

• Exam structure

- Several conceptual questions
- Several "problems" (e.g., Q1 and Q2 on pset 2 were in past exams)
- For all those who declared their conflicts
 - We have already sent an email; please respond by tomorrow

2

• If we missed you, meet me after the lecture today

Announcements

LOST sessions

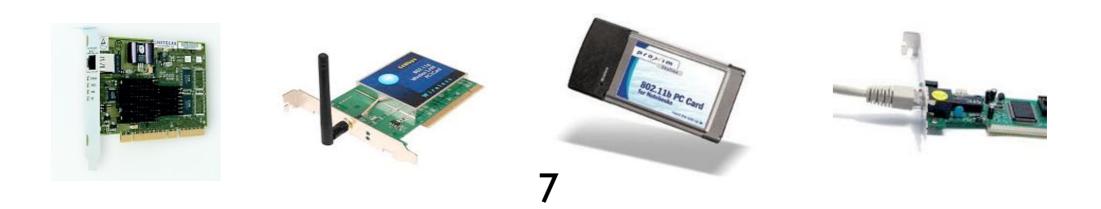
- There seems to be some confusion
- LOST sessions should not be your "first" option
 - Not meant to provide you with exclusive TAs all the time
- Office hours and Ed Discussions are your first options
 - If you are still feeling LOST, then ask for one
- When you send a request for the LOST session
 - Tell us what you have tried before requesting a session
- As noted on the website, no LOST sessions 1 week prior to exams

Context for Today's Lecture

- You now understand
 - Network sharing (in depth)
 - Architectural principles (in depth)
 - Design goals for the Internet (& computer networks, in depth)

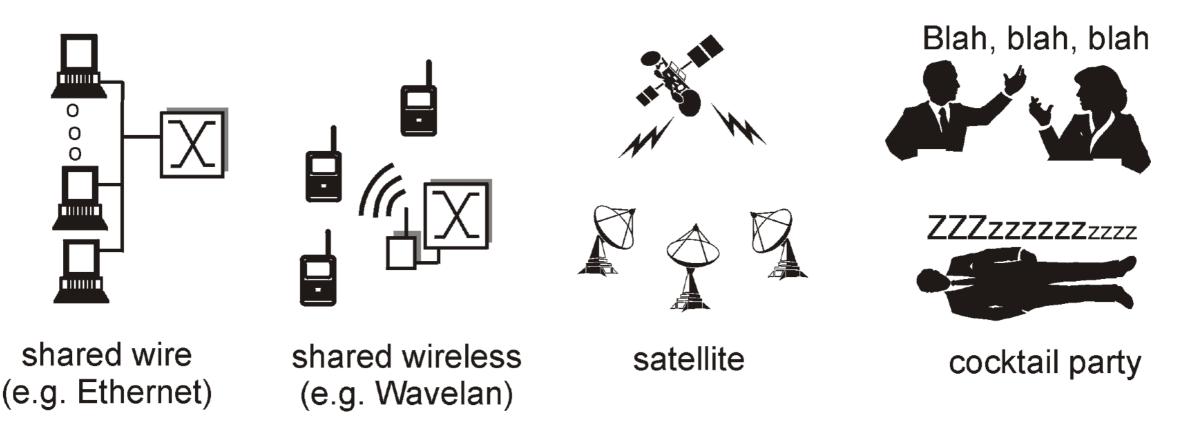
4

- End-to-end working of the Internet (at a high-level)
- Now, time to dive deeper:
 - Link Layer (~1 week)
 - Network Layer (~4 weeks)
 - Transport Layer (~3 weeks)
- Today: Link layer


Goals for Today's Lecture

- Link layer:
 - Broadcast medium
 - Sharing broadcast medium
 - Carrier Sense Multiple Access Collision Detection (CSMA/CD)

Data Link Layer


Data Link Layer

- Two types of communication mediums
 - Point-to-point
 - The high-level ideas discussed so far were for point-to-point
 - Broadcast
 - Original design of Link layer protocols
 - More recent versions have moved to point-to-point
 - We will discuss why so!
- Network Adapters (e.g., NIC network interface card)
 - The hardware that connects a machine to the network
 - Has a "name" MAC (Medium access control) address

Point-to-Point vs. Broadcast Medium

- Point-to-point: dedicated pairwise communication
 - E.g., long distance fiber link
 - E.g., Point-to-point link between two routers
- Broadcast: shared wire or medium
 - Traditional Link Layer (Ethernet)
 - 802.11 wireless LAN

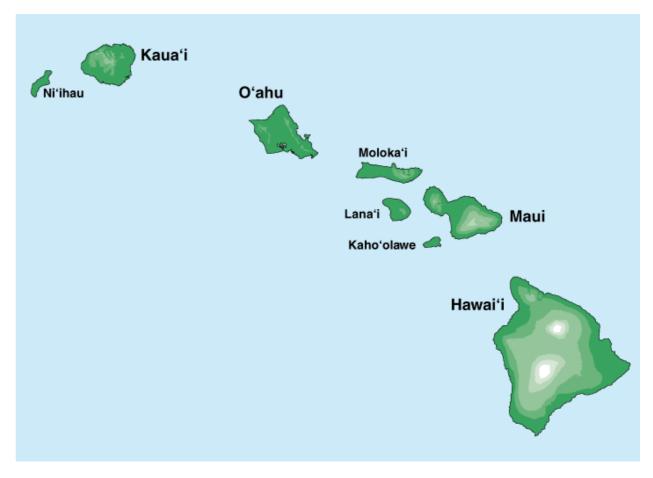
Data Link Layer: Broadcast (until ~2000s)

• Ever been to a party?

- Tried to have an interesting discussion?
- Fundamental challenge?
 - Collisions

Broadcast Medium: Desirable properties

- One and only one: data delivery
- How do we design a broadcast medium protocol for data delivery?



link-layer "protocol"

Where it all Started: AlohaNet

- Norm Abramson:
 - Left Stanford in 1970
 - So he could SURF
 - Set up first data communication system for Hawaiian islands
 - Central hub at University of Hawaii, Oahu

Aloha Signaling

- Two channels: random access, broadcast
- Sites send packets to hub
 - Random access channel
 - Each site transmits packets at "random" times
 - If a packet not received (due to collision), site resends
- Hub sends packets to all sites
 - Broadcast channel
 - Sites can receive even if they are also sending
- Challenge: Requires a centralized hub
 - If the hub fails, the entire network fails
 - Not always a good design (remember the design goals?)

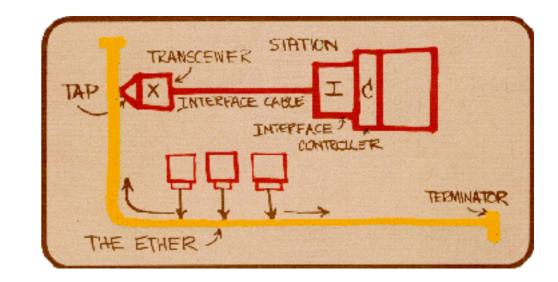
Sharing a broadcast channel

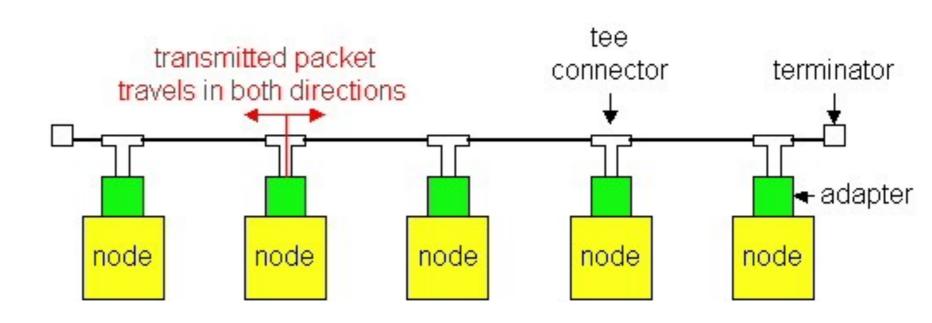
- Context: a shared broadcast channel
 - Must avoid/handle having multiple sources speaking at once
 - Otherwise collisions lead to garbled data
 - Need distributed algorithm for sharing channel
 - Algorithm determines when and which source can transmit
- Three classes of techniques
 - Frequency-division multiple access: divide channel into pieces
 - Time-division multiple access: divide channel into time slots
 - Random access: allow uncoordinated access
 - Detect collisions, and if needed, recover from collisions
 - More in the Internet style!

Frequency-Division Multiple Access (FDMA)

- Frequency sharing
 - Divide the channel into frequencies
 - Every source is assigned a subset of frequencies
 - And transmits data only on its assigned frequency
- Goods: no collisions
- Not-so-good:
 - A source may have nothing to send (frequency wasted)
 - Interference may cause disruption
 - Hard to implement for wired networks
- Used in many wireless networks
 - E.g., radio

Time-Division Multiple Access (TDMA)


Time sharing

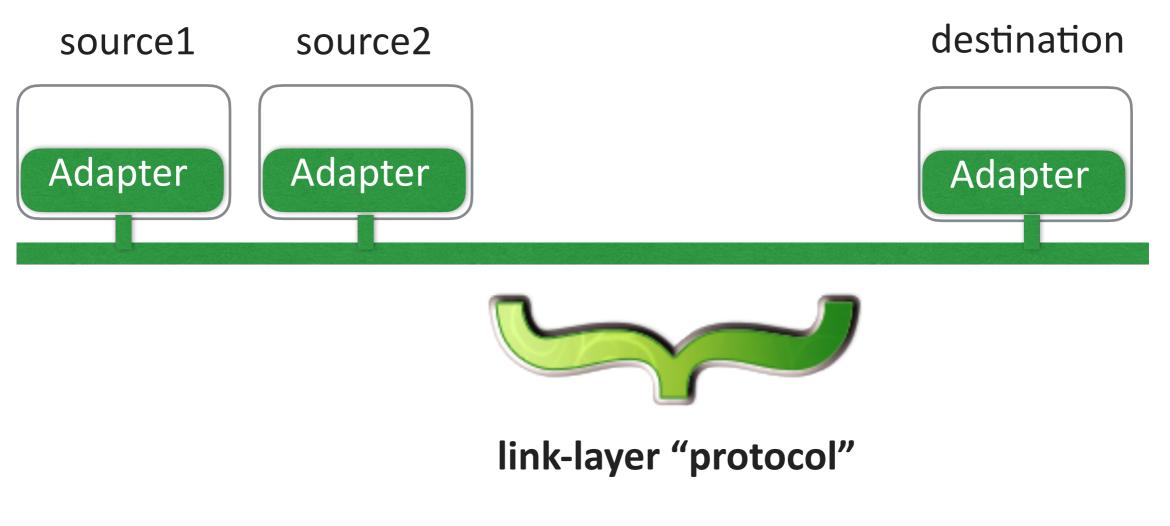

- Divide time into **slots**
- Divide data into **frames**
 - Such that a frame can be transmitted in one slot
- Every source is assigned a subset of slots
 - And transmits a frame only in its assigned slot
- Goods: no collisions
- Not-so-good: Underutilization of resources
 - During a slot, a source may have nothing to send
 - When the source has something to send, wait for its slot

Random Access

- Bob Metcalfe:
 - Xerox PARC
 - Visits Hawaii, and gets the idea
 - Shared wired medium

Life lesson:

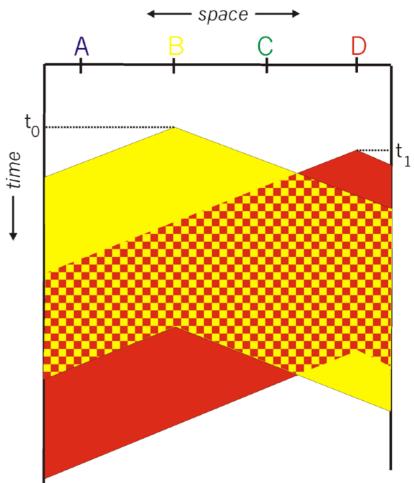
If you want to invent great things, go to Hawaii :-)


Link Layer (Media Access Control, or MAC) Protocol

When source has a frame to send

- Transmit at full bandwidth
- No a priori coordination among nodes
- Two or more transmitting sources => collision
 - Frame lost
- Link-layer protocol specifies:
 - How to detect collision
 - How to recover from collisions

LETS TRY!


Multiple source-destination pairs Design a protocol that allows sharing the broadcast medium

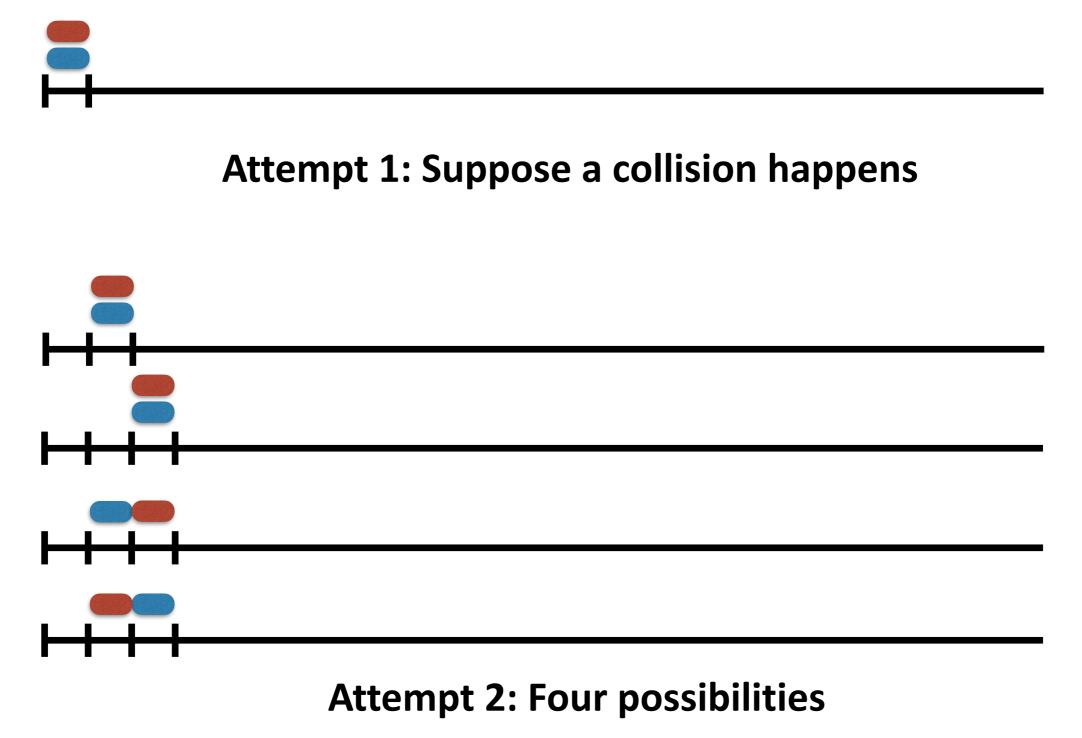
19

CSMA (Carrier Sense Multiple Access)

- CSMA: listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy: defer transmission
- Human analogy: don't interrupt others!
- Does this eliminate all collisions?
 - No, because of nonzero propagation delay
- Solution:
 - Include a Collision Detection (CD) mechanism
 - If a collision detected
 - Retransmit

CSMA/CD (Carrier Sense Multiple Access, Collision Detection)

- CSMA/CD: carrier sensing
 - Collisions detected within short time
 - Colliding transmissions aborted, reducing wastage
- Collision detection easy in wired (broadcast) LANs
 - Compare transmitted and received signals
- Collision detection difficult in wireless LANs


Once a collision is detected ...

- When should the frame be resent?
- Immediately?
 - Every NIC would start sending immediately
 - Collision again!
- Take turns?
 - Back to time division multiplexing

CSMA/CD in one slide!

- Carrier Sense: continuously listen to the channel
 - If idle: start transmitting
 - If busy: wait until idle
- Collision Detection: listen while transmitting
 - No collision: transmission complete
 - Collision: abort transmission; send jam signal
- Random access: exponential back off
 - After collision, transmit after "waiting time"
 - After k collisions, choose "waiting time" from {0, ..., 2^k-1)
 - Exponentially increasing waiting times
 - But also, exponentially larger success probability

CSMA/CD (Collision Detection): An example

Success with Probability = 0.5

What is the success probability in attempt 3?

Answer: 0.75

Performance of CSMA/CD

- Time spent transmitting a frame (collision)
 - Proportional to distance d; why?

Time spent transmitting a frame (no collision)

- Frame length p divided by bandwidth b
- Rough estimate for efficiency (K some constant)

$$E \sim \frac{\frac{p}{b}}{\frac{p}{b} + Kd}$$

- Observations:
 - For large frames AND small distances, E ~ 1
 - Right frame length depends on b, K, d
 - As bandwidth increases, E decreases
 - That is why high-speed LANs are switched

29

Evolution

- Ethernet was invented as a broadcast technology
 - Hosts share channel
 - Each packet received by all attached hosts
 - CSMA/CD
- Current Ethernets are "switched" (next lecture)
 - Point-to-point medium between switches;
 - Point-to-point medium between each host and switch
 - No sharing, no CSMA/CD