
Computer Networks:

Architecture and Protocols

CS4450

Lecture 4/5
- Three Architectural Principles

- Design Goals

Rachit Agarwal

Announcements

• You have been a great class so far

• Most of you are quiet and paying attention

• You are giving great answers!

• Even more importantly, you are asking great questions!

• Thank you!

• Admin:
• Sent out a poll for deciding the office hours. Please fill.

• Office hours are happening.

Context for Today’s Lecture

• So far, we have discussed several high-level concepts

• Network sharing

• End-to-end working of the Internet

• Addressing, Routing, Switch/Router functionality, etc.

• And, have dived deep into several topics:

• Circuit switching and packet switching (especially the “why”)

• Delays (transmission, propagation)

• You know more about computer networks than you may realize!

• Today: Lay the foundation for rest of the course

Goals for Today’s and next Lecture

• Three architectural principles:
• Layering

• End-to-end principle

• Fate Sharing principle

• Design goals for computer networks:
• Eight of them

• We will come back to these over and over again
• Almost every lecture in the semester

• Before we start, let me outrightly admit ….
• First time I learnt these, I said — what the @#$% ….

• … there are easier ways to torture students!

• Now, these have become the guiding principles of my career!

Quick recap from last lecture

• Locating the destination: Naming, addressing

• Mapping of names to addresses using Domain Name System

• Finding a path to the destination: Routing

• Distributed algorithm that computes and stores routing tables

• Sending data to the destination: Forwarding

• Input queues, virtual output queues, output queues

• Enablers: Packet header (address), and routing table (outgoing link)

• Reliability: Failure handling

• Not much discussion, but the question: hosts or networks?

Recap: four fundamental problems!

Recap: the final piece in the story — Host network stack

Of Sockets and Ports

• When a process wants access to the network, it opens a socket, which is

associated with a port

• Socket: an OS mechanism that connects processes to the network stack

• Port: number that identifies that particular socket

• The port number is used by the OS to direct incoming packets

• Packet Header must include:
• Source and destination address (used by network)

• Source and destination port (used by network stack)

• When a packet arrives at the destination host, packet is delivered to the

socket associated with the destination port

• More details later

Recap: Implications for Packet Header

• Application opens a socket that allows it to connect to the network stack

• Maps name of the web site to its address using DNS

• The network stack at the source embeds the address and port for both

the source and the destination in packet header

• Each router constructs a routing table using a distributed algorithm

• Each router uses destination address in the packet header to look up the

outgoing link in the routing table

• And when the link is free, forwards the packet

• When a packet arrives the destination:

• The network stack at the destination uses the port to forward the

packet to the right application

Recap: the end-to-end story

• Network fabric: Deliver packets from stack to stack (based on address)

• Network stack (OS): Deliver packets to appropriate socket (based on port)

• Applications:
• Send and receive packets

• Understand content of packet bodies

Recap: Separation of concerns

Questions?

• Why is separation of concerns important?
• Separation of concerns ~ Modularity

• If each component’s task well-defined, one can focus design on that task

• And replace it with any other implementation that does that task

• Without changing anything else

Who cares?

• Modularity is nothing more than decomposing programs/systems into

smaller units.

• A clean “separation of concerns”

• Plays a crucial role in computer science…

• … and networking

What is Modularity

• Partition system into modules
• Each module has well defined interface

• Interfaces give flexibility in implementation
• Changes have limited scope

• Examples
• Libraries encapsulating set of functionalities

• Programming language abstracts away CPU

• The trick is to find the right modularity
• The interfaces should be long-lasting

• If interfaces are changing often, modularity is wrong

Computer System Modularity

• The need for modularity still applies

• And is even more important! (why?)

• Network implementations not just distributed across many lines of code

• Normal modularity “organizes” that code

• Networking is distributed across many machines

• Hosts

• Routers

Network System Modularity

• Applications deal with data

• End-host network stacks move data from applications to the fabric

• Network fabric delivers data between network stacks

• Network (stack + fabric) delivers data between applications

• What is the interface between applications and network stacks?

• Sockets

• What is the interface between network stacks and network fabric?

• Packet headers

• The right way to think about sockets and packets

“Thinking” Network System Modularity

Three Architectural Principles

• How to break system into modules?

• Classic decomposition into tasks

• Where are modules implemented?

• Hosts?

• Routers?

• Both?

• Where is state stored?

• Hosts?

• Routers?

• Both?

Network Modularity Decisions

• How to break system into modules

• Layering

• Where are modules implemented

• End-to-End Principle

• Where is state stored?

• Fate-Sharing

Leads to three design principles

Layering

• Bits on wire

• Packets on wire

• Deliver packets between hosts in a “local” network (eg, within Cornell)

• Routing & forwarding packets across networks (eg, from Cornell to UIUC)

• Deliver data reliably between processes (applications)

• Do something with the data

Breakdown end-to-end functionality into tasks

• Bits on wire

• Packets on wire

• Deliver packets between hosts in a local network

• Routing and forwarding (packets) across networks

• Deliver data reliably between processes

• Do something with the data

Breakdown end-to-end functionality into tasks

• Bits on wire (Physical)

• Packets on wire

• Deliver packets between hosts in a local network (Datalink)

• Routing and forwarding (packets) across networks (Network)

• Deliver data reliably between processes (Transport)

• Do something with the data (Application)

Resulting Modules (Layers)

• Bits on wire (Physical, Layer1)

• Packets on wire

• Deliver packets to hosts across local network (Datalink, Layer2)

• Routing and forwarding (packets) across networks (Network, Layer3)

• Deliver data reliably between processes (Transport, Layer4)

• Do something with the data (Application)

Resulting Modules (Layers)

• Application: Providing network support for apps

• Transport (L4): (Reliable) end-to-end delivery

• Network (L3): Routing and forwarding across networks

• Datalink (L2): Forwarding within a local network

• Physical (L1): Bits on wire

Five Layers (Top - Down)

• A kind of modularity
• Functionality separated into layers

• Layer n interfaces with only layer n-1 and layer n+1

• Hides complexity of surrounding layers

Layering

Built on top of
reliable delivery

Built on top of best-
effort forwarding

Built on top of
best-effort routing

Built on top of
physical bit transfer

An end-to-end view of the layers

• Application: Providing network support for apps
• Transport (L4): (Reliable) end-to-end delivery
• Network (L3): Routing and forwarding across networks
• Datalink (L2): Forwarding within a local network
• Physical (L1): Bits on wire

Why does the packet go all the way to network layer at each hop?

Questions?

• How to break system into modules?

• Layering

• Where are modules implemented?

• End-to-End Principle

• Where is state stored?

• Fate-Sharing

Three Internet Design Principles

• Layers are simple if only on a single machine

• Just stack of modules interacting with those above/below

• But we need to implement layers across machines

• Hosts

• Routers/switches

• What gets implemented where? And why?

Distributing Layers across Network

• Bits arrive on wire, must make it up to application

• Therefore, all layers must exist at host!

What gets implemented on Host?

• Bits arrive on wire

• Physical layer necessary

• Packets must be forwarded to next router/switch

• Datalink layer necessary

• Routers participate in global delivery

• Network layer necessary

• Routers do not support reliable delivery
• Transport layer (and above) not supported

• Why?

What gets implemented on Router?

• Lower three layers implemented everywhere

• Top two layers only implemented at hosts

Visualizing what gets implemented where

End host

Router/switch

