CS 4450, 5456

Computer Networks: Architecture and Protocols

Rachit Agarwal

#1: What do I mean by "computer networks"?

What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

- Three important components:
 - Set of network elements, connected together:
 - Core "infrastructure"
 - Protocols:
 - Needed to use the network
 - Purpose:
 - Sharing resources at the end hosts (computing devices)

What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

- Three important components:
 - Set of network elements, connected together:
 - Core "infrastructure"
 - Protocols:
 - Needed to use the network
 - Purpose:
 - Sharing resources at the end hosts (computing devices)

Questions?

#2: What do computer networks do?

What do computer networks do?

- A computer network delivers data between the end points
- One and only one task: Delivering the data
- Read that sentence again. Remember it forever.
- This delivery is done by:
 - Chopping the data into **packets**
 - Sending individual packets across the network
 - Reconstructing the data at the end points
- That is all! This course:
 - Evolution of three components of computer networks!
 - Infrastructure, protocols, purpose
 - Why the *&#@ has it taken 50 years of research (and counting) to design a data delivery system

Data delivery as a fundamental goal

- Support the logical equivalence of <u>Interprocess Communication (IPC)</u>
 - Mechanism for "processes on the same host" to exchange messages
- Computer networks allow "processes on two different hosts" to exchange messages
- Clean separation of concerns
 - Computer networks deliver data
 - Applications running on end hosts decide what to do with the data
- Keeps networks simple, general and application-agnostic

Questions?

#3: What do computer networks look like?

What do computer networks look like?

Three Basic components

- End hosts: they send/receive packets
- Switches/Routers: they forward packets
- Links: connect end hosts to switches, and switches to each other

What do computer networks look like?

End hosts, switches/routers, links

What would the world look like without the Internet?

• Lets see

#1: Has transformed and more importantly, <u>is transforming everything</u>!

- Industry: core to and creator of many large and influential companies
 - Google, Facebook, Apple, Cisco, Broadcom, AT&T, Verizon, Akamai
- Communication
 - Email, messenger, phones, VoIP, ...
- Travel
 - AirBnB, Uber, Maps, ...
- Health
 - Digital health, remote diagnostics,
- Entertainment
 - Netflix, news
- Relationships
 - Okcupid, Tinder, ...

#2: To learn how to <u>design for tussle</u>!

Federated System

- The Internet interconnects different networks
 - >18000 Internet Service Providers (ISPs)
- How do you interconnect distrustful and competing entities?
- Constant tussle between business and technical factors!

#3: To learn how to design for <u>scale</u>!

• Tremendous scale

- 51% of world population
- 1.24 trillion unique web pages
- Every second, approximately
 - > 2 million emails
 - > 40000 Google search queries
 - > 6000 Tweets
- Introduced the phrase "Internet-scale"

#4: To learn how to design for <u>diversity</u>!

- Communication latency: Microseconds to seconds
- Bandwidth: 1Kilobits/second to 100Gigabits/second
- **Packet Loss:** 0-90%
- Technology: Wireless, satellite, optical, copper, ...
- End hosts: Sensors, cell phones, computers, servers, datacenters, ...
- Applications: www, voice, video, gaming, remote medicine
- Trust models: selfish (users), malicious (attackers), greedy (companies), ...

And yet, everything needs to work in tandem!

#5: To learn how to design for <u>evolution</u>!

	1970	Today
Bandwidth	50 kbps	100+ Gbps
#End hosts	< 100 computers	8 billion +
Applications	Telnet and File transfer	!!

We have no clue what 2025 would be like!

#6: To learn how to think <u>"architecture rather than engineering"</u>!

- The early pioneers came up with a solution that has lasted for 40 years!
 - Almost unchanged!!! A true success story of "thinking differently"!!
 - Brilliant in conception; sometimes weak in execution
 - Several architectural principles emerged
 - Decentralization [All lectures]
 - "Packets" [Lecture #2]
 - Statistical multiplexing [Lecture #2]
 - The end-to-end principle [Lecture #3, #6+]
 - Layering [Lecture #3, #6+]
 - Best effort service [Lecture #4, #6+]
 - Narrow waist interface [Lecture #6]

#6: To learn how to think <u>"architecture rather than engineering"</u>!

- The early pioneers came up with a solution that has lasted for 40 years!
 - Almost unchanged!!! A true success story of "thinking differently"!!
 - Brilliant in conception; sometimes weak in execution
 - Several architectural principles emerged

Computer networks offer us a lesson on how to "reason" through the design of a complex, diverse, ever-evolving, failure-prone system

- What are our goals and constraints? How to prioritize them?
- How do we decompose a problem into smaller components?
- How to partition the functionality across multiple components?
- What are the design tradeoffs?

In short, how to architect a system!

#5: What is this course about?

What is this course <u>not</u> about?

- There are many kinds of computer networks (and technologies)
 - Telephone (landline) networks
 - Cellular networks
 - Wireless networks
 - Optical networks
 - Infiniband
 -
- And many applications of these computer networks
 - World Wide Web
 - Multimedia streaming
 - Social networks
 - Email/audio/video messaging
 - Search

What is this course about?

Architectural principles, design goals and performance objectives in wired networks

- What tasks get done?
 - What is delivered (packets, files, ...)?
 - What are the semantics (reliability, ordering, ...)?

• <u>Where</u> do tasks get done?

- At the network elements? At the end-hosts?
- How do end hosts interface with network elements?
- How do different network elements interface with each other?

• How tasks get done?

- What protocols and algorithms do each of these use?
- How to achieve various performance objectives (latency, etc.)?

What is this course about?

Architectural principles, design goals and performance objectives in wired networks

- Mostly drawing examples from the <u>Internet</u>
 - Not a particular kind of network
 - Not just another technology on the list
 - Ties different networks together
- Why Internet?
 - Has similar goals as individual network technologies
 - Speed, Cost, Reliability, ...
 - Has an additional fundamental goal
 - Ability to connect all computer networks (and technologies)
 - Leads to myriad of new challenges

Questions?

#6: What is the course workload, grading policies, etc.?

Course workload

- Problem set, one every two weeks
 - For you to practice questions; solutions available after one week
- Four projects
 - To gain hands-on experience for people who are interested
- In-class surprise quizzes
 - There may be no quiz, or there may be a quiz per lecture
 - Pay attention, regularly read material, attend lectures
- Three exams
- Class feedback
- <u>New (5456)</u>: some form of project/survey

Course workload

- My courses tend to be "heavy": require regular attention
 - You have been warned!
- My exams tend to be hard
 - You have been warned!
- Quizzes will be simple
 - Pay attention, regularly read material, attend lectures
 - Solve problem sets regularly

#7: How will this course be organized?

Course organization

• Prerequisites

- This is a senior-level course
- We expect knowledge of algorithms, probability, data structures
 - Review your past courses as needed
- Textbook
 - Computer Networks: A systems approach
 - 5th edition, but others are fine too (translate sections, etc.)
 - We will not follow its order of presentation
 - Instead, use it as a reference for individual topics
 - e-version of the book available via Cornell library

Advanced readings

- If you get curious about a topic and want to read more
- Anything not covered in the class will not be in exams/quizzes

Interaction with course staff

- Ed Discussions
 - Not a substitute for classes

Office hours

- We want to choose timings that suit you; fill the poll (check email)
- We will announce office hours (time/location) on Ed Discussions
 - More hours by appointment

LOST sessions

- We understand that students sometime lose track of the course
 - Spend the rest of the semester "catching up"
- Send us an email; we'll help you catch up in 1-1 sessions
 - No need to give us a proof; we are here to help
 - But we will keep track to avoid abuse
- Secure, private email address: <u>cs4450-prof@cornell.edu</u>