
Some CS3410 (or equivalent) topics you might

have forgotten

RVR

February 15, 2021

This section presents a simplified view of a computer, with terminology and
concepts that all CS4410 students are required to know.

As shown in Figure 1, a computer consists of

• one or more Central Processing Units (CPUs), each with one or more
cores,

• memory (RAM, ROM, ...),

• a collection of peripherals (aka devices),

• an address bus, a data bus, and a control bus, each having a certain number
of lines.

Memory is organized in bytes, each of which has 8 bits. Each byte (not each
bit) has its own address. If an address has x bits, a core can address up to 2x

bytes. For most modern computers, x = 64. (We will ignore that typically only
48 or so are actually used.) For simplicity, we assume that an address bus has
x lines.

Cores load and store words of memory. On a y-bit computer, a word has y
bits. For most modern computers, y = 64, that is, a word on such a computer
consists of 64 bits and the data bus has y lines. The address of a word is the
same as the address of its first byte. (Depending on the CPU architecture, this
may either be the least or most significant byte of the word.)

Addresses are typically specified in hexadecimal numbers. Each digit in a
hexadecimal number corresponds to 4 bits and is therefore a number between
0 and F. An address of x bits can be specified with x/4 hexadecimal digits
(including leading zeroes). We often prepend ‘0x’ to distinguish a hexadecimal
number. For example, a 32-bit address needs 32/4 = 8 hexadecimal digits.
Such addresses range from 0x00000000 to 0xFFFFFFFF. We call that range the
address space (see left side of Figure 2—note that an address space is usually
shown with the lowest address at the bottom.)

Memory stores words. Assuming there is only one CPU, a core can load a
word by placing the address of the word on the address bus and activating the
“read” line on the control bus. The memory will place the value of the word on

1



Figure 1: Schematic diagram of computer

Figure 2: An address space and how a core may use part of the memory

2



common name abbr. int. std. name #bytes approximation

kilobyte KB kibibyte 210 ∼ 103 bytes
megabyte MB mebibyte 220 ∼ 106 bytes
gigabyte GB gibibyte 230 ∼ 109 bytes
terabyte TB tebibyte 240 ∼ 1012 bytes
petabyte PB pebibyte 250 ∼ 1015 bytes

Table 1: Names and sizes of common units of memory

the data bus. A core can store a word in memory by placing the address of the
word on the address bus, the value of the word on the data bus, and activating
the “write” line on the control bus.

Memory sizes are usually specified in units such as kilobyte, megabytes, etc.
Table 1 shows the most common ones.

A core uses (at least) three sections of memory: the code (aka text), the
data, and the stack (see right side of Figure 2). The code section holds CPU
instructions and is usually at or near the start of the address space. The PC
points (or at least should point) into the code section. The data section, right
after the code section, holds global data such as variables and arrays. It grows
“up” when new data is allocated. We call that dynamic part of the data section
the heap. The top of the heap is sometimes referred to as the break, but there is
no dedicated address register to hold that value. The stack section starts high
in the address space. It grows “down” as needed. Perhaps confusingly, the top
of the stack, pointed to by SP, is the lowest part of the stack section. Note that
the heap and the stack grow toward one another—ideally they never meet.

Each core contains a set of registers. Some are used to hold addresses, while
others may hold words of data. The program counter (PC), aka instruction
pointer (IP), is a register that holds the address of the current instruction stored
in memory. The stack pointer (SP) holds the address of the top of the stack.

When a core executes a “call function” instruction, it saves the context con-
sisting of the PC and the registers that the function may use by pushing all
this context onto the stack. On function return, the context is restored by pop-
ping those registers from the stack. By restoring the PC, the execution returns
to where the function was invoked. When there are multiple cores, each core
should have its own stack section, but cores can share code and data sections.

Besides individual load and store operations, a core also has some combined
load and store operations that execute atomically (indivisibly). These are par-
ticularly useful when multiple cores are executing simultaneously and sharing
memory. The simplest example is the “test-and-set” instruction. This instruc-
tion loads a memory location and stores a specified value. Note that it returns
the old contents of the memory location.

There are many types of peripherals or devices. The most common ones
include screens, keyboards, mice, disks, clocks, audio interfaces, network inter-
faces, as well as generic device interfaces such as USB. A device is typically

3



memory-mapped, which means that it pretends to be memory and occupies part
of the address space of a computer. For example, each pixel on the screen may
be represented by a word that contains its RGB color value, so a core can simply
store such values just like it would with ordinary memory.

Most memory-mapped devices, however, require a less straightforward way
of interfacing. For example, it is not possible to read to or write from disk one
word at a time—instead the disk is read or written a block at a time, where a
block is typically at least 512 bytes. A disk device has a set of so-called control
registers. that a core can read and write like memory:

• block number : the address of a block on disk;

• memory address: where in memory to load or store the content of a block;

• command register : read, write, and other commands;

• status register : contains the status of an outstanding command.

To read a block, a core stores the address of the block in the block number
register, stores the memory address of where to load the contents of the block in
the memory address register, and stores the “read command” in the command
register. While the disk device retrieves the block and writes its contents to
the specified memory, the core can continue executing other instructions. On
completion (or error), the disk device interrupts the core by activating the
interrupt line on the control bus. The core may then read the status register to
see if the disk read was completed successfully or encountered an error.

Signal Handling

Signals are an important part of a core’s execution. There are essentially two
kinds of signals: synchronous and asynchronous signals.

Synchronous signals have various names such as exceptions or faults and
happen deterministically during execution. Examples include include divide by
zero, accessing an invalid or restricted memory address, executing an unknown
or restricted instruction code, and so on. A system call instruction or breakpoint
instruction also causes a synchronous signals.

Asynchronous signals are known as interupts, and are typically sent by a
device to a core upon completion of an operation or when an error occurs in
the device. Interrupts are maskable: a core can enable or disable interrupts.
When disabled, an interrupt is not dropped—it is delayed until the time the
core enables interrupts. A core has to explicitly drop an interrupt by writing to
a device register. By contrast, exceptions or faults cannot be masked.

Signals, whether synchronous or asynchronous, may be trapped. The arrival
of a signal causes the core to automatically do the following:

• if maskable, disable interrupts (at least for that specific device);

• push the current PC onto the stack;

4



• set the PC to the trap handler : a predefined location in the code segment.

In the trap handler, the core typically starts with saving the current context,
in particular its registers. It then executes the code to handle the specific
signal. Often (but not always) it is desirable to resume the original code that
was executing. In that case the trap handler restores the registers and then
executes a “return-from-trap” instruction. This instruction atomically pops the
PC from the stack and re-enables interrupts, causing the original code to resume
execution in essentially the same state it was in before the signal. Because trap
handlers run with interrupts disabled, it is important that they are short and
finish quickly.

When a core wants to execute some code that should not be interrupted,
it should first disable interrupts, then execute the code, and then re-enable
interrupts. This is useful when some data is accessed both by “normal” code
and an interrupt handler. For example, the software for a keyboard device may
use a queue. The trap handler is invoked when a key is pressed, and causes a
character to be pushed onto the queue. Normal code may try to pop characters
from the queue. When such code runs unmediated, this can lead to so-called
race conditions that could corrupt the queue data structure.

5


