Security

CS 4410 Operating Systems

Security in Networking

- Network Vulnerabilities
- Secure Sockets (Encryption)
- Secure Naming (Certificates)

What Could Go Wrong?

What Could Go Wrong?

Eve

IP: 116.66.161.33

Eve can:

- Intercept Alice's DNS query, say that www.bob.com is at her IP
 - Impersonate or compromise a DNS server or Alice's local nameserver
 - Alice will send the message to 116.66.161.33 thinking it's Bob

- Tell router R4 that her IP address is 128.84.139.12
 - Alice will send the message to Bob's IP address, but R4 will forward the packets to Eve
- Put a device in promiscuous mode on the network, read all packets addressed to Bob
 - Bob gets the message, but Eve gets to read it too

Communicating Securely

- Verify that the recipient is who they say they are (Authentication)
- Prevent anyone other than intended recipient from reading the message (Authorization)

First Step: Encrypt the Message

- Symmetric-Key Cryptography: Alice and Bob have a shared secret key
- Pro: Eve can't read the message even if she intercepts it
- Con: How does Alice share the key with Bob? Send it over the network?

Encrypting the Message

- Public-Key Cryptography
 - Bob tells everyone his public key (PK_B), Alice uses it to encrypt the message for him
 - Only Bob knows his private key (SK_B), which is necessary to decrypt the message

Encrypting the Message

- Public-Key Cryptography
- Pro: No need to share a secret over the network
- Con: Public-key encryption (RSA) is much slower than symmetric encryption (AES)

Session Keys

- Combine public-key and symmetric encryption to get benefits of both
- Use public-key encryption to safely send a **session key**: secret key for a symmetric cipher
- 2. Use symmetric encryption with the session key for subsequent messages

Session Keys

TLS: Transport Layer Security

- Originated with SSL (Secure Sockets Layer), now obsolete
- Runs on TCP connection
- Initial handshake to establish identity of server and create session key
- Subsequent TCP segments have data encrypted with session key

Establishing Identity

- How does Alice learn Bob's public key?
- What if Eve pretends to be Bob and presents her own public key?

Digital Certificates

- Use a trusted third party to provide Bob's public key
- Pre-distribute or hard-code third party's public key (easier problem)
- Use digital signatures to ensure Eve can't impersonate trusted third party

Digital Certificates

- Signed message from trusted party is a certificate proving that this is Bob's key
- Bob can provide this certificate himself, no need to contact third party

Certificate Authorities

- Trusted party that issues key certificates is a certificate authority (CA)
- CA's job is to verify Bob's identity, then sign a certificate for his public key
- Public keys for CAs must be manually installed

Certificate Authority Hierarchy

- Small number of hard-coded "root" CAs
 - Just like DNS root servers
- A CA can sign certificates for other CAs
 - Once you know one CA's public key, you can use it to discover others (just like DNS)
- CA certificate describes what domains this
 CA can sign keys for

IP: 128.148.32.12
Public Key: PK_B
Domain: *.brown.edu
Signature with PK_R

IP: 128.84.139.64
Public Key: PK_C
Domain: *.cornell.edu
Signature with PK_R

TLS in More Detail

