Security

CS 4410
Operating Systems

[E. Birrell, A. Bracy, E. Sirer, R. Van Renesse]

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

References: Security Introduction and Access Control by Fred Schneider

http://www.cs.cornell.edu/fbs/publications/chptr.Intro.pdf
http://www.cs.cornell.edu/fbs/publications/chptr.DAC.pdf

Historical Context

Compatible Time-Sharing System (CTSS) is
Demonstrated

The increasing number of users needing access to computers in the early 1960s leads
to experiments in timesharing computer systems. Timesharing systems can support
many users — sometimes hundreds — by sharing the computer with each user. CTSS
was developed by the MIT Computation Center under the direction of Fernando
Corbat6 and was based on a modified IBM 7094 mainframe computer. Programs
created for CTSS included RUNOFF, an early text formatting utility, and an early inter-
user messaging system that presaged email. CTSS operated until 1973.

Kenneth Thompson and Dennis Ritchie
develop UNIX

AT&T Bell Labs programmers Kenneth Thompson and Dennis Ritchie develop the UNIX
operating system on a spare DEC minicomputer. UNIX combined many of the
timesharing and file management features offered by Multics, from which it took its
name. (Multics, a project of the mid-1960s, represented one of the earliest efforts at
creating a multi-user, multi-tasking operating system.) The UNIX operating system
quickly secured a wide following, particularly among engineers and scientists, and today
is the basis of much of our world’s computing infrastructure.

1960’s OSes begin to be shared. Enter:

e Communication

* Synchronization

* Security: once a small OS sub-topic. Not anymore!

http://www.computerhistory.org, https://en.wikipedia.org

Security Properties: CIA

Confidentiality: keeping secrets
- who is allowed to learn what information

Integrity: permitting changes
- what changes to the system and its environment are
allowed
Availability: guarantee of service

- service should be “timely”

Security in Computer Systems
Gold (Au) Standard for Security [Lampson]

&> Authorization: mechanisms that govern whether
% actions are permitted

== Authentication: mechanisms that bind principals
to actions

% Audit: mechanisms that record and review
actions

Plan of Attack (no pun intended!)

* Protection - This lecture
* Authorization: what are you permitted to do?
* Access Control Matrix

» Security - Next lecture

* Authentication: how do we know who you are?
 Threats and Attacks

Access Control Terminology

Operations: how one learns or updates information
Principals: executors (users, processes, threads, procedures)
Objects of operations: memory, files, modules, services

Access Control Policy:
* who may perform which operations on which objects

» enforces confidentiality & integrity

Goal: each object is accessed correctly and only by those
principals that are allowed to do so

Access Control Mechanisms

Reference Monitor:
* entity with the power to observe and enforce the policy
e consulted on each operation invocation
 allows operation if invoker has required privileges
* can enforce confidentiality and/or integrity

Assumptions:
* Predefined operations are the sole means by which principals

can learn or update information
 All predefined operations can be monitored (complete

mediation)

Trusted Computing Base (TCB)

Heart of every trusted system has a small TCB
* HW & SW necessary for enforcing security rules
* Typically has:
- most hardware, firmware
- portion of OS kernel

- most or all programs with superuser power
* Desirable features include:

- Should be small
- Should be separable and well-defined
- Easy to scrutinize independently

TCB and Reference Monitor

 All sensitive operations go through the reference monitor
* Monitor decides if operation should proceed
* Not aseparable module in most OSes...

-
[Locess User space

Reference Monitor

" Kernel space

Trusted Computing Base
OS kernel

Who defines authorizations?
Discretionary Access Control:

» owner defines authorizations

* Subjects determine who has access to their objects

e Commonly used (Linux/MacOSX/Windows File Systems)
* Flawed for tighter security (program might be buggy)

* This lecture

Mandatory Access Control:

« System imposes access control policy that object owners cannot

change
 centralized authority defines authorizations

Principle of Least Privilege

“Every program and every privileged user of the system should
operate using the least amount of privilege necessary to complete

the job.”

- Jerome Saltzer
(of the end-to-end argument)

Want to minimize:

* code running inside kernel
* code running as sysadmin

Challenge: It’s hard to know:

* what permissions are needed in advance
* what permissions should be granted

Access Control Matrix

* Abstract model of protection
* Rows: principals = users
* Columns: objects =files, 1/0, etc.

OBJECTS

Principals prelim.pdf | jan-hw.tex | scores.xls

rvr

(prof r, W r r, W
jan
(student) LW

Unordered set of triples <Principal,0Object,Operation>
What does Principle of Least Privilege say about this? .

Need Finer-Grained Principals

Protection Domains = new set of principals
* each process belongs to a protection domain
» executing process can transition from domain to domain

Example domain: user > task

 task =program, procedure, block of statements

» task =started by user orin response to user’s request

* user > task: holds minimum privilege to get task done for user

- task-specific privileges (PoLP is &)

13

Protection Domain Implementation

Possibilities:

1. Certain system calls cause protection-domain
transitions. Obvious candidates:
* invoking a program
* changing from user mode to supervisor mode

2. Provide explicit domain-change syscall
* application programmer or a compiler then required
to decide when to invoke this domain-change system
call

14

Access Matrix with Protection Domains

OBJECTS

Principals | prelim.pdf | jan-hw.tex | scores.xls
rvr>sh

rvr>>latex r, w r

rvr>excel r, W
jan>sh

jan>latex r, w

jan>excel

When to transition protection-domains?
* invoking a program
* changing from user to kernel mode

Need to explicitly authorize them in the matrix

15

Access Matrix with Domain Transitions

Principals

OBJECTS

prelim.pdf

jan-hw.tex

scores.xls

rvr>sh

rvr>latex

rvr>excel

janl>sh

jan>1latex

janP>excel

rvr>sh

™

rvr>latex

=

rvr>excel

r, w

janP>sh

janD>latex

r,w

janD>excel

e = enter

16

DAC Implementation Needs
Must support:

* Determining if <Principal,0bject,Operation> is in matrix
* Changing the matrix

* Assigning each process a protection domain

* Transitioning between domains as needed

* Listing each principal’s privileges (for each object)

* Listing each object’s privileges (held by principals)

2D array?
+ looks good in powerpoint!
—sparse =»> store only the non-empty cells

17

How shall we implement this?

Access Control List (ACL): column for each object stored
as a list for the object

Principals

rvr>sh
rvr>latex
rvr>excel

jan>sh
jan>latex

jan>excel

How shall we implement this?

Access Control List (ACL): column for each object stored
as a list for the object

Capabilities: row for each subject stored as list for the
subject

OBJECTS
Principals | prelim.pdf | jan-hw.tex | scores.xls

Same in theory; different in practice!

Access Control Lists
ACL for an objectis a list

e.g., (ebirrell, {r,w}) (clarkson, {r}) (student, {r})

To check whether is allowed to perform

some operation on some object,
* Look up principal in object’s ACL. If not in ACL,
reject
* Check whether operationisin the set for that
principal. If not, reject

20

ccess Control in Windows

| [3 [} = | Local Disk(C) - O X
Home Share View 0
« v E} » ThisPC » Local Disk () v | 0 Search Local Disk (C:) 0o
Quick access Name . Date modified Type Size +
Desktop * Data S/1A/IN16 215 ARA Eila fnldar
= EFI Data Properties X
* Downloads b 4
PerfL ;
| Documents & ErLogs General | Sharing | Securty | Previous Versions | Customize
pi + Pregram Files
ictures : . .
Ba Program Files 3 CObject name: C:\Data
@ OneDrive Users Group or User names:
| Wndows | | [
& This PC
&, SYSTEM
i Desktop S_!,Administlators (WIN-0J7HODD3E65 Administrators)
& Documents 3!, Users (WIN-OJ7HOD03865 sers)
* Downloads To change permissions, click Edit. E; Edit
J2 Music Pemissions for Authenticated
. Users Allow Deny
o Pictures
) Full centrol -~
H Videos Mody
£ Local Disk (C:) Read & execute
Q Shared (\\vboxsry] | List folder contents
Read
Q MNetwork Wirte v
Fc_:r special permissions or advanced settings, e
click Advanced.
7items 1 item selected . L
. x| oy |

In NTFS: each file has a set of properties
Richer set than UNIX: RWX

P(permission) O(owner) D(delete), read (RX), change (RWXO),
full control (RWXOPD)

Access Control Lists Roundup

Advantages:
 Efficient review of permissions for an object
* Centralized enforcement is simple to deploy, verify
* Revocation is straightforward

Disadvantages:
* |nefficient review of permissions for a principal
* Large ACLs take up space in object
* Vulnerable to confused deputy attack

22

Confused Deputy Attack

* Process A does not have permission to write file

-, but it can communicate with process B

* Process B has permission to write file F

* Process A tricks process B into writing file F with
a value process A supplies

* Example: SQL injection and cross-site scripting

root
>apache

fred>chrome r

root >apache rw

Capability Lists

The capability list for a principal is a list
e.g., (dac.tex, {r,w}) (dac.pptx, {r,w})

Capabilities carry privileges:
1) Authorization: Performing operation on object
requires a principal to hold a capability such that
2) Unforgeability: Capabilities cannot be
counterfeited or corrupted.

Note: Capabilities are (typically) transferable

24

C-Lists
OS maintains a list of capabilities
for each principal (process)

Least privileged

1) Authorization: OS
mediates access to objectd
checks process capabilitie

2) Unforgeability:
capabilities are stored in
protected memory region
(kernel memory) -

Most privileged

Device drivers

Device drivers

Applications

Access Control in UNIX

UNIX: has user and group identifiers: uid and gid
Per process: protection domain =rvr|facultyl>sh

Per file: ACL owner |group|other = storedini-node
* Only owner can change these rights (using chmod)
* Eachi-node has 3x3 RWX bits for user, group, others
* 2 mode bits allow process to change across domains

- setuid, setgid bits

(Hybrid!) Approximation of access control scheme:
 Authorization (check ACL) performed at open

* Returns a file handle - essentially a capability

e Subsequent read orwrite uses the file handle

26

Capabilities Roundup

Advantages:
* Eliminates confused deputy problems
* Natural approach for user-defined objects

Disadvantages:
* Review of permissions?
* Delegation?
* Revocation?

ACLs vs Capabilities

principal P across
all objects

Need to scan all
objects’ lists.

ACLs: Capabilities:
For each Object: | For each Principal:
<Pl,privs1> <Ol,privsl>
<P,,privs,>... <0,,privs,>...
Review rights for |Easy! Hard.
object O Print the list. Need to scan all principals’
lists.
Review rights for |Hard. Easy!

Print the c-list.

Revocation

Easy!
Delete P from O’s
list.

If kernel tracks capabilities,
invalidates on revocation.
Harder if object tracks
revocation list.

28

History of Discretionary Access Control (DAC)

1760+ early philosophical pioneers of private
property (Blackston, Bastiat,+)

1965 “access control lists” coined @ MIT describing
Multics (CTSS foreshadowed ACLs) (Daley &

Neumann)

1966 “capability” coined and OS supervisor
outlined @ MIT (Dennis & van Horn)

1974 early computer security: “the user gives
access rights at his own discretion” (Walter+)

1983 DoD’s Orange book coins the term
“discretionary access control”

