
Security

CS 4410
Operating Systems

References: Security Introduction and Access Control by Fred Schneider

[E. Birrell, A. Bracy, E. Sirer, R. Van Renesse]

http://www.cs.cornell.edu/fbs/publications/chptr.Intro.pdf
http://www.cs.cornell.edu/fbs/publications/chptr.DAC.pdf

Historical Context

2
http://www.computerhistory.org, https://en.wikipedia.org

1961

1969

1960’s OSes begin to be shared. Enter:

• Communication

• Synchronization

• Security: once a small OS sub-topic. Not anymore!

Confidentiality: keeping secrets

- who is allowed to learn what information

Integrity: permitting changes

- what changes to the system and its environment are
allowed

Availability: guarantee of service

- service should be “timely”

Security Properties: CIA

3

Gold (Au) Standard for Security [Lampson]

• Authorization: mechanisms that govern whether
actions are permitted

• Authentication: mechanisms that bind principals
to actions

• Audit: mechanisms that record and review
actions

Security in Computer Systems

4

• Protection - This lecture
• Authorization: what are you permitted to do?

• Access Control Matrix

• Security – Next lecture
• Authentication: how do we know who you are?

• Threats and Attacks

Plan of Attack (no pun intended!)

5

Operations: how one learns or updates information

Principals: executors (users, processes, threads, procedures)

Objects of operations: memory, files, modules, services

Access Control Policy:

• who may perform which operations on which objects

• enforces confidentiality & integrity

Goal: each object is accessed correctly and only by those

principals that are allowed to do so

Access Control Terminology

6

Reference Monitor:

• entity with the power to observe and enforce the policy

• consulted on each operation invocation

• allows operation if invoker has required privileges

• can enforce confidentiality and/or integrity

Assumptions:
• Predefined operations are the sole means by which principals

can learn or update information
• All predefined operations can be monitored (complete

mediation)

Access Control Mechanisms

7

Heart of every trusted system has a small TCB
• HW & SW necessary for enforcing security rules
• Typically has:

- most hardware, firmware

- portion of OS kernel

- most or all programs with superuser power

• Desirable features include:

- Should be small

- Should be separable and well-defined

- Easy to scrutinize independently

Trusted Computing Base (TCB)

8

• All sensitive operations go through the reference monitor
• Monitor decides if operation should proceed
• Not a separable module in most OSes…

TCB and Reference Monitor

9

User space

Kernel space

User
Process

OS kernel
Trusted Computing Base

Reference Monitor

Discretionary Access Control:
• owner defines authorizations
• Subjects determine who has access to their objects
• Commonly used (Linux/MacOSX/Windows File Systems)
• Flawed for tighter security (program might be buggy)
• This lecture

Mandatory Access Control:
• System imposes access control policy that object owners cannot

change
• centralized authority defines authorizations

Who defines authorizations?

10

“Every program and every privileged user of the system should
operate using the least amount of privilege necessary to complete
the job.”

- Jerome Saltzer
(of the end-to-end argument)

Want to minimize:
• code running inside kernel

• code running as sysadmin

Challenge: It’s hard to know:
• what permissions are needed in advance

• what permissions should be granted

Principle of Least Privilege

11

• Abstract model of protection
• Rows: principals = users
• Columns: objects = files, I/O, etc.

Unordered set of triples <Principal,Object,Operation>
What does Principle of Least Privilege say about this?

Access Control Matrix

12

Principals

OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr

(prof)
r, w r r, w

jan

(student)
r, w

Protection Domains = new set of principals
• each process belongs to a protection domain
• executing process can transition from domain to domain

Example domain: user ▷ task
• task = program, procedure, block of statements
• task = started by user or in response to user’s request
• user ▷ task: holds minimum privilege to get task done for user

→ task-specific privileges (PoLP is ☺)

Need Finer-Grained Principals

13

Possibilities:

1. Certain system calls cause protection-domain
transitions. Obvious candidates:

• invoking a program
• changing from user mode to supervisor mode

2. Provide explicit domain-change syscall
• application programmer or a compiler then required

to decide when to invoke this domain-change system
call

Protection Domain Implementation

14

When to transition protection-domains?
• invoking a program
• changing from user to kernel mode
• …

Need to explicitly authorize them in the matrix

Access Matrix with Protection Domains

15

Principals

OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr▷sh

rvr▷latex r, w r

rvr▷excel r, w

jan▷sh

jan▷latex r, w

jan▷excel

e = enter

Access Matrix with Domain Transitions

16

Principals

OBJECTS

p
r
e
l
i
m
.
p
d
f

j
a
n
-
h
w
.
t
e
x

s
c
o
r
e
s
.
x
l
s

r
v
r
▷
s
h

r
v
r
▷
l
a
t
e
x

r
v
r
▷
e
x
c
e
l

j
a
n
▷
s
h

j
a
n
▷
l
a
t
e
x

j
a
n
▷
e
x
c
e
l

rvr▷sh e e

rvr▷latex r, w r

rvr▷excel r, w

jan▷sh e e

jan▷latex r, w

jan▷excel

Must support:
• Determining if <Principal,Object,Operation> is in matrix

• Changing the matrix

• Assigning each process a protection domain

• Transitioning between domains as needed

• Listing each principal’s privileges (for each object)

• Listing each object’s privileges (held by principals)

2D array?

+ looks good in powerpoint!

− sparse → store only the non-empty cells

DAC Implementation Needs

17

Access Control List (ACL): column for each object stored
as a list for the object

How shall we implement this?

18

Principals

OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr▷sh

rvr▷latex r, w r

rvr▷excel r, w

jan▷sh

jan▷latex r, w

jan▷excel

Access Control List (ACL): column for each object stored
as a list for the object
Capabilities: row for each subject stored as list for the
subject

Same in theory; different in practice!

How shall we implement this?

19

Principals

OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr▷sh

rvr▷latex r, w r

rvr▷excel r, w

jan▷sh

jan▷latex r, w

jan▷excel

ACL for an object is a list

e.g., ⟨ebirrell, {r,w}⟩ ⟨clarkson, {r}⟩ ⟨student, {r}⟩

To check whether is allowed to perform
some operation on some object,
• Look up principal in object’s ACL. If not in ACL,

reject
• Check whether operation is in the set for that

principal. If not, reject

Access Control Lists

20

Access Control in Windows

21

In NTFS: each file has a set of properties
Richer set than UNIX: RWX
P(permission) O(owner) D(delete), read (RX), change (RWXO),
full control (RWXOPD)

Advantages:
• Efficient review of permissions for an object
• Centralized enforcement is simple to deploy, verify
• Revocation is straightforward

Disadvantages:
• Inefficient review of permissions for a principal
• Large ACLs take up space in object
• Vulnerable to confused deputy attack

Access Control Lists Roundup

22

• Process A does not have permission to write file
F, but it can communicate with process B

• Process B has permission to write file F
• Process A tricks process B into writing file F with

a value process A supplies
• Example: SQL injection and cross-site scripting

Confused Deputy Attack

23

root
▷apache

fred
▷chrome

fred ▷chrome r

root ▷apache rw

The capability list for a principal is a list

e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

Capabilities carry privileges:

1) Authorization: Performing operation on object

requires a principal to hold a capability such that

2) Unforgeability: Capabilities cannot be

counterfeited or corrupted.

Note: Capabilities are (typically) transferable

Capability Lists

24

OS maintains a list of capabilities

for each principal (process)

C-Lists

25

1) Authorization: OS

mediates access to objects,

checks process capabilities

2) Unforgeability:

capabilities are stored in

protected memory region

(kernel memory)

UNIX: has user and group identifiers: uid and gid

Per process: protection domain = rvr|faculty▷sh

Per file: ACL owner|group|other → stored in i-node
• Only owner can change these rights (using chmod)
• Each i-node has 3x3 RWX bits for user, group, others
• 2 mode bits allow process to change across domains
- setuid, setgid bits

(Hybrid!) Approximation of access control scheme:
• Authorization (check ACL) performed at open
• Returns a file handle → essentially a capability
• Subsequent read or write uses the file handle

Access Control in UNIX

26

Advantages:
• Eliminates confused deputy problems
• Natural approach for user-defined objects

Disadvantages:
• Review of permissions?
• Delegation?
• Revocation?

Capabilities Roundup

27

ACLs:
For each Object:
<P1,privs1>
<P2,privs2>…

Capabilities:
For each Principal:
<O1,privs1>
<O2,privs2>…

Review rights for
object O

Easy!
Print the list.

Hard.
Need to scan all principals’
lists.

Review rights for
principal P across
all objects

Hard.
Need to scan all
objects’ lists.

Easy!
Print the c-list.

Revocation Easy!
Delete P from O’s
list.

If kernel tracks capabilities,
invalidates on revocation.
Harder if object tracks
revocation list.

ACLs vs Capabilities

28

History of Discretionary Access Control (DAC)

29

1760+ early philosophical pioneers of private
property (Blackston, Bastiat,+)

1965 “access control lists” coined @ MIT describing
Multics (CTSS foreshadowed ACLs) (Daley &
Neumann)

1966 “capability” coined and OS supervisor
outlined @ MIT (Dennis & van Horn)

1974 early computer security: “the user gives
access rights at his own discretion” (Walter+)

1983 DoD’s Orange book coins the term
“discretionary access control”

