Networking

CS 4410 Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, Kurose, Ross, E. Sirer, R. Van Renesse]

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Link Layer: Local Area Networking (LAN) and Ethernet

Link Layer

- Each host has one or more NICs
 - Network Interface Cards
 - Ethernet, 802.11, etc.
- Each NIC has a MAC address
 - Media Access Control address
 - Ethernet example: b8:e3:56:15:6a:72
 - Unique to network instance
 - often even globally unique
 - Does not change if NIC moves
- Messages are packets or frames

Example: Ethernet

- 1976, Metcalfe & Boggs at Xerox
 - Later at 3COM
- Based on the Aloha network in Hawaii
- Named after the "luminiferous ether"
- Centered around a broadcast bus
- Simple link-level protocol, scales pretty well
- Tremendously successful
- Still in widespread use
 - many orders of magnitude increase in bandwidth since early versions

Ethernet basics

An Ethernet packet

CRC Checksum

(Cyclic Redundancy Check)

- Basically a hash function on the packet
- Added to the end of a packet
- Used to detect malformed packets, e.g. electrical interference, noise

"CSMA/CD"

- Carrier sense
 - Listen before you speak
- Multiple access
 - Multiple hosts can access the network
- Collision detect
 - Detect and respond to cases where two hosts collide

Sending packets

• Carrier sense, broadcast if ether is available

Collisions

• What happens if two people decide to transmit simultaneously?

Collision Detection & Retransmission

- Detect collision by measuring incoming & outgoing signal strength
 - Shouldn't be receiving any incoming signal while transmitting
- Hosts involved in the collision promptly stop data transmission, sleep for a while, and attempt to retransmit
- How long they sleep is determined by how many collisions have occurred before (exponential backoff + random noise)
- Abort after 16 retries, hence no guarantee that a packet will get to its destination

Ethernet Features

- Completely distributed
 - No central arbiter

- Inexpensive
 - No state in the network
 - No extra hardware for arbitration
 - Cheap physical links (twisted pair of wires)

Ethernet Problems

- The endpoints are trusted to follow the collision-detect and retransmit protocol
 - Certification process tries to assure compliance
 - Not everyone always backs off exponentially
- Hosts are trusted to only listen to packets destined for them
 - But the data is available for all to see
 - All packets are broadcast on the wire
 - Can place Ethernet card in promiscuous mode and listen

Switched Ethernet

- Today's Ethernet deployments are much faster
- In wired settings, Switched Ethernet is now the norm
 - All hosts connect to a switch, which forwards packets
 - Each p2p connection is a mini Ethernet set-up
 - More secure (no snooping), no possibility of collisions
 - Switches organize into a spanning tree
- Not to be confused with Ethernet Hub
 - A hub simply connects the wires into one big shared wire

Wireless

- 802.11 protocols inherit many of the Ethernet concepts
- Full compatibility with Ethernet interface
 - Same address and packet formats

Application
Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Network Layer

Network Layer

- There are lots of Local Area Networks
 - each with their own
 - address format and allocation scheme
 - packet format
 - maximum packet size
 - LAN-level protocols, reliability guarantees
- Wouldn't it be nice to tie them all together?
 - Nodes with multiple NICs can provide the glue!
 - Standardize address and packet formats
- This gives rise to an "Internetwork"
 - aka WAN (wide-area network)

Internetworking Origins

- Expensive supercomputers scattered throughout the US
- Researchers scattered differently throughout the US

Needed a way to connect researchers to

expensive machinery

Internetworking Origins

- Department of Defense initiated studies on how to build a resilient global network (60s, 70s)
 - How do you coordinate a nuclear attack?
- Interoperability and dynamic routing are a must
 - Along with a lot of other properties
- Result: Internet (orig. ARPAnet, then NSFnet)
- A complex system with simple components

Internet Overview

- Every host is assigned, and identified by, an <u>IP</u> address
- Messages are called <u>datagrams</u>
 - the term packet is probably more common though...
- Each datagram contains a <u>header</u> that specifies the destination address
- The network <u>routes</u> datagrams from the source to the destination

IP

- Internetworking protocol
 - Network layer
- Common address format
- Common packet format for the Internet
 - Specifies what packets look like
 - Fragments long packets into shorter packets
 - Reassembles fragments into original shape
- IPv4 vs IPv6
 - IPv4 is what most people use
 - IPv6 more scalable and clears up some of the messy parts

IP: Narrow Waist

from: http://if-we.clients.labzero.com/code/posts/what-title-ii-means-for-tcp/

IP Addressing

- Every (active) NIC has an IP address
 - IPv4: 32-bit descriptor, e.g. 128.84.12.43
 - IPv6: 128-bit descriptor (but only 64 bits "functional")
 - Will use IPv4 unless specified otherwise...
- Each Internet Service Provider (ISP) owns a set of IP addresses
- ISPs assign IP addresses to NICs
- IP addresses can be re-used
- Same NIC may have different IP addresses over time

IP "subnetting"

- An IP address consists of a prefix of size n and a suffix of size 32 – n
 - Either specified by a number, e.g., 128.84.32.00/24
 - Or a "netmask", e.g., 255.255.255.0 (in case n = 24)
- A "subnet" is identified by a prefix and has 2³²⁻ⁿ addresses
 - Suffix of "all zeroes" or "all ones" reserved for broadcast
 - Big subnets have a short prefix and a long suffix
 - Small subnets have a long prefix and a short suffix

Addressing & DHCP

How to get an IP address:

128.84.96.90 DHCP Server 128.84.96.91

"I just got here. My physical address is 1a:34:2c:9a:de:cc. What's my IP?"

"Your IP is 128.84.96.89 for the next 24 hours"

DHCP is used to discover IP addresses (and more)

DHCP = Dynamic Host Configuration Protocol

DHCP

- Each LAN (usually) runs a DHCP server
 - you probably run one at home inside your "router box"
- DHCP server maintains
 - the IP subnet that it owns (say, 128.84.245.00/24)
 - a map of IP address <-> MAC address
 - possibly with a timeout (called a "lease")
- When a NIC comes up, it broadcasts a DHCPDISCOVER message
 - if MAC address in the map, respond with corresponding IP address
 - if not, but an IP address is unmapped and thus available, map that IP address and respond with that
- DHCP also returns the netmask
- Note: NICs can also be statically configured and don't need DHCP

Addressing & ARP

ARP = Address Resolution Protocol

Virtual to physical translation for IP addresses

26

Scale?

- ARP and DHCP are broadcast protocols
- Only scale to single subnet
- Need more to scale to the Internet!
- Routing (next lecture)

IPv4 packet layout

IP Header Fields

- Version (4 bits): 4 or 6
- IHL (4 bits): Internet Header Length in 32-bit words
 - usually 5 unless options are present
- TOS (1 byte): type of service (not used much)
- Total Length (2 bytes): length of packet in bytes
- Id (2 bytes), Flags (3 bits), Fragment Offset (13 bits)
 - used for fragmentation/reassembly. Stay tuned
- TTL (1 byte): Time To Live. Decremented at each hop
- Protocol (1 byte): TCP, UDP, ICMP, ...
- Header Checksum (2 bytes): to detect corrupted headers

IP Fragmentation

- Networks have different maximum packet sizes
 - "MTU": Maximum Transmission Unit
 - Big packets are sometimes desirable less overhead
 - Huge packets are not desirable reduced response time for others
- High-level protocols could try to figure out the minimum MTU along the network path, but
 - Inefficient for links with large MTUs
 - The route can change underneath
- Consequently, IP can transparently fragment and reassemble packets

IP Fragmentation Mechanics

- Source assigns each datagram an "identification"
- At each hop, IP can divide a long datagram into N smaller datagrams
- Sets the More Fragments bit except on the last packet
- Receiving end puts the fragments together based on *Identification* and *More Fragments* and *Fragment* Offset (times 8)

IP Options (not well supported)

- Source Routing: The source specifies the set of hosts that the packet should traverse
- Record Route: If this option appears in a packet, every router along a path attaches its own IP address to the packet
- Timestamp: Every router along the route attaches a timestamp to the packet
- Security: Packets are marked with user info, and the security classification of the person on whose behalf they travel on the network
 - Most of these options pose security holes and are generally not implemented