
Networking

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, Kurose, Ross, E. Sirer, R. Van Renesse]

Transport Layer:
UDP & TCP

2

Application

Transport

Network

Link

Physical

Several figures in this section come from
“Computer Networking: A Top Down Approach”
by Jim Kurose, Keith Ross

• Provide logical communication
between processes on different
hosts

• Run in end systems
• Sender: packages messages into

segments, passes to network
layer

• Receiver: reassembles segments
into messages, passes to
application layer

App chooses protocol it wants
(e.g., TCP or UDP)

Transport services and protocols

3

application

transport

network

link

physical

application

transport

network

link

physical

User Datagram Protocol (UDP)
• unreliable, unordered delivery
• no-frills extension of best-effort IP

Transmission Control Protocol (TCP)
• reliable, in-order delivery
• congestion control
• flow control
• connection setup

Services not available:
• delay guarantees
• bandwidth guarantees

Transport services and protocols

4

source port # dest port #

other header fields

application message

(payload)

How to create a segment

6

TCP/UDP segment format

Sending application:
• specifies IP address and

destination port
• uses socket bound to a

source port

Transport Layer:
• breaks application

message into smaller
chunks

• adds transport-layer
header to each

Network Layer:
• adds network-layer header

(with IP address)

src IP addr | dst IP addr
src port # | dst port #

Multiplexing at Sender

7

sources

application

transport

network

link

physical

P1 P2
5380

process

socketport

destination

application

transport

network

link

physical

P3
9157

application

transport

network

link

physical

P4

destination

• handles data from multiple sockets
• adds transport header (later used for demultiplexing)

host: IP
address A host: IP

address C

server: IP
address B

5775

B | C
src dst

B | A

src dst

80 | 9157 53 | 5775

C | B

src dst

A | B

src dst

Demultiplexing at Receiver

8

sources

application

transport

network

link

physical

P1 P2

process
socket

destination

application

transport

network

link

physical

P3

application

transport

network

link

physical

P4

• use header information to deliver received segments
to correct socket

sources

host: IP
address A host: IP

address C

server: IP
address B

5380

9157 5775

9157| 80 5775| 53

• no frills, bare bones transport protocol
• best effort service, UDP segments may be:
• lost
• delivered out-of-order, duplicated to app

• connectionless:
• no handshaking between UDP sender, receiver
• each UDP segment handled independently of

others
• reliable transfer still possible:
• add reliability at application layer
• application-specific error recovery!

User Datagram Protocol (UDP)

9

I was gonna tell you guys a joke about UDP…
But you might not get it I was you guys about UDP might not

C | B

src dst
A | B

src dst

Connectionless demux: example

10

application

transport

network

link

physical

P1

process
socket

application

transport

network

link

physical

P3

application

transport

network

link

physical

P4

Host receives 2 UDP segments:
• checks dst port, directs segment to socket w/that port
• different src IP or port but same dst port → same socket
• application must sort it out

host: IP
address A host: IP

address C

server: IP
address B

sources

destination

sources

9157 5775

6428

9157| 6428 5785| 6428

UDP Segment Format

11

32 bits

length (in bytes)
of UDP segment,
including header

source port # dest port #

length checksum

application message

(payload)

(IP address will be added when the segment is turned
into a datagram/packet at the Network Layer)

UDP header size: 8 bytes

Speed:
• no connection establishment (which can add delay)
• no congestion control: UDP can blast away as fast as

desired

Simplicity:
• no connection state at sender, receiver
• small header size (8 bytes)

(Possibly) Extra work for applications:
Need to handle reordering, duplicate suppression,
missing packets

Not all applications will care about these!

UDP Advantages & Disadvantages

12

Target Users: streaming multimedia apps

• loss tolerant (occasional packet drop OK)

• rate sensitive (want constant, fast speeds)

UDP is good to build on

Who uses UDP?

13

Applications & their transport protocols

14

• Reliable, ordered communication
• Standard, adaptive protocol that delivers good-

enough performance and deals well with
congestion

• All web traffic travels over TCP/IP

• Why? enough applications demand reliable ordered
delivery that they should not have to implement
their own protocol

Transmission Control Protocol (TCP)

15

TCP Segment Format

16

32 bits

source port # dest port #

sequence number

acknowledgment number

HL U A P R S F receive window

checksum urg data pointer

options (variable length)

application message

(payload)

(IP address will be added when the segment is turned
into a datagram/packet at the Network Layer)

TCP header size: 20-60 bytes

HL: header len
U: urgent data
A: ACK # valid
P: push data now
RST, SYN, FIN:
connection commands
(setup, teardown)

bytes receiver
willing to accept

• TCP is connection oriented
• A connection is initiated with a

three-way handshake
• Three-way handshake ensures

against duplicate SYN packets
• Takes 3 packets, 1.5 RTT

(Round Trip Time)

TCP Connections

17

SYN = Synchronize
ACK = Acknowledgment

I would tell you a joke about TCP... If only to be acknowledged 😢

3-way handshake establishes common state on
both sides of a connection.
Both sides will:
• have seen one packet from the other side →

know what the first seq# ought to be
• know that the other side is ready to receive

Server will typically create a new socket for the
client upon connection.

TCP Handshakes

18

TCP Sockets
Server host may support many
simultaneous TCP sockets
Each socket identified by its own 4-tuple
• source IP address
• source port number
• dest IP address
• dest port number

Connection-oriented demux: receiver
uses all 4 values to direct segment to
appropriate socket

19

Connection-oriented demux: example

20

application

transport

network

link

physical

P1

process
socket

application

transport

network

link

physical

P4

application

transport

network

link

physical

P5

Host receives 3 TCP segments:
• all destined to IP addr B, port 80
• demuxed to different sockets with socket’s 4-tuple

host: IP
address A host: IP

address C

server: IP
address B

sources

destination

sources

915

B| 80

A|915

P2

P6
517915

P3
B| 80

C|517

B| 80

C|915

915 | 80

A | B

915 | 80

C | B

517 | 80

C | B

src dst

Each packet carries a unique sequence #
• The initial number is chosen randomly
• The SEQ is incremented by the data length

4410 simplification: just increment by 1

Each packet carries an acknowledgment
• Acknowledge a set of packets by ACK-ing

the latest SEQ received

Reliable transport is implemented using
these identifiers

TCP Packets

21

3 round-trips:
1. set up a connection
2. send data & receive a response
3. tear down connection

FINs work (mostly) like SYNs to
tear down connection

Need to wait after a FIN for
straggling packets

TCP Usage Pattern

22

• Sender-side: TCP keeps a
copy of all sent, but
unacknowledged packets

• If acknowledgment does
not arrive within a “send
timeout” period, packet is
resent

• Send timeout adjusts to the
round-trip delay

Reliable transport

23

Send timeout

Here's a joke about TCP.
Did you get it?
Did you get it?
Did you get it?
Did you get it?

How long does it take to send a segment?

• S: size of segment in bytes
• L: one-way latency in seconds
• B: bandwidth in bytes per second

• Then the time between the start of sending and the
completion of receiving is about L + S/B seconds
(ignoring headers)

• And another L seconds (total: 2L + S/B) before the
acknowledgment is received by the sender
• assuming ack segments are small

• The resulting end-to-end throughput (without
pipelining) would be about S / (2L + S/B) bytes/second

24

What is a good timeout period ?
- Goal: improve throughput without unnecessary transmissions

→ Timeout is a function of RTT and variance

TCP timeouts

25

NewAverageRTT = (1 -) OldAverageRTT + LatestRTT

NewAverageVar = (1 - β) OldAverageVar + β LatestVar

where LatestRTT = (ack_receive_time – send_time),

LatestVar = |LatestRTT – AverageRTT|,

 = 1/8, β = ¼ typically.

Timeout = AverageRTT + 4*AverageVar

Pipelining: sender allows multiple, “in-flight”,
yet-to-be-acknowledged packets
• increases throughput
• need buffering at sender and receiver
• How big should the window be?
• What if a packet in the middle goes missing?

Pipelined Protocols

26

Example: TCP Window Size = 4

27

When first item in
window is

acknowledged,
sender can send

the 5th item.

Suppose:
• b/w is b bytes / second
• RTT is r seconds
• ACK is a small message

→ you can send b*r bytes before
receiving an ACK for the first byte

(but b/w and RTT are both variable…)

How much data “fits” in a pipe?

28

Receiver detects a lost packet
(i.e., a missing seq), ACKs the
last id it successfully received

Sender can detect the loss
without waiting for timeout

TCP Fast Retransmit

29

Receiver detects a lost packet
(i.e., a missing seq), ACKs the
last id it successfully received

Sender can detect the loss
without waiting for timeout

TCP Fast Retransmit

30

Additive-Increase/Multiplicative-Decrease (AIMD):
• window size++ every RTT if no packets dropped
• window size/2 if packet is dropped

- drop evident from the acknowledgments

→ slowly builds up to max bandwidth, and hover there

- Does not achieve the max possible

+ Shares bandwidth well with other TCP connections

This linear-increase, exponential backoff in the face of
congestion is termed TCP-friendliness

TCP Congestion Control

31

TCP Window Size

• Linear increase
• Exponential backoff

Time

B
a

n
d

w
id

th

Max Bandwidth

32

(Assuming no other losses
in the network except
those due to bandwidth)

Window Sizes:
1,2,3,4,5,6,7,8,9,10,
5,6,7,8,9,10,
5,6,7,8,9,10,
. . .

Fairness goal: if k TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/k

TCP Fairness

33

TCP connection 1

bottleneck
router

capacity RTCP connection 2

Two competing sessions:
• additive increase gives slope of 1, as throughout increases
• multiplicative decrease decreases throughput

proportionally

Why is TCP fair?

34

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Problem:
• linear increase takes a long time to

build up a window size that
matches the link bandwidth*delay

• most file transactions are short
→ TCP spends a lot of time with small
windows, never reaching large
window size

Solution: Allow TCP to increase
window size by doubling until first loss

Initial rate is slow but ramps up
exponentially fast

TCP Slow Start

35

Host A

R
T

T

Host B

time

• Initial phase: exponential increase
• Assuming no other losses in the network

except those due to bandwidth

TCP Slow Start

36
Time

B
a

n
d

w
id

th

Max Bandwidth

• Reliable ordered message delivery
- Connection oriented, 3-way handshake

• Transmission window for better
throughput
- Timeouts based on link parameters

• Congestion control
- Linear increase, exponential backoff

• Fast adaptation
- Exponential increase in the initial phase

TCP Summary

37

