Networking

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, Kurose, Ross, E. Sirer, R. Van Renesse]

Application
Transport
Network
Link
Physical

Transport Layer:
UDP & TCP

Several figures in this section come from

“Computer Networking: A Top Down Approach”
by Jim Kurose, Keith Ross

Transport services and protocols

° DrOVide logical Communication application

\ transport

petween processes on different <7 newen
nosts /|

* Runin end systems
* Sender: packages messagesinto _
segments, passes to network
layer
* Receiver: reassembles segments
into messages, passes to
application layer

phy5|cal

application
transport
network
link

e _ physical
.) :'

App chooses protocol it wants
(e.g., TCP or UDP)

Transport services and protocols

User Datagram Protocol (UDP) “Unrelidb‘e ol
- unreliable, unordered delivery " proto

* no-frills extension of best-effort IP Datag
Transmission Control Protocol (TCP) ontfo\
 reliable, in-order delivery «-rruﬁtyC 7

* congestion control ProtOCO

 flow control
* connection setup

Services not available;

* delay guarantees
* bandwidth guarantees

How to create a segment

Sending application:

 specifies IP address and
destination port

e uses socket boundtoa
source port

Transport Layer:

* breaks application
message into smaller
chunks

 adds transport-layer
header to each

Network Layer:
* adds network-layer header
(with IP address)

TCP/UDP segment format

. . (D process
Multiplexing at Sender [Cpors &]socket

* handles data from multiple sockets
 adds transport header (later used for demultiplexing)

sources
application
. . 280 . .
destination |' '|55 destination
licati rajport application
app Ication network
K
-- phydical p = 5775w
— o
trangport server: |P trangport
net ork address B network
h l src_dst src_dst h“ k :
ica B| C physica
host: IP P host: e
address A 809157 agcsjtr.elss c

D process
Demultiplexing at Receiver t=socket

* use header information to deliver received segments
to correct socket

destination
application
80|. .|56
sources sources
— trafsport .
application netdork application
K
= 9157w phjdical b w 5775w
tranpport seﬁP tranfport
network address B net ork
£ it src_dst
phykical phy |cal
Qgcs:ltr:elsl,jsA 5775153 host: IP
addressC

User Datagram Protocol (UDP)

* no frills, bare bones transport protocol

 best effort service, UDP segments may be:
* lost
 delivered out-of-order, duplicated to app

* connectionless:
* no handshaking between UDP sender, receiver
* each UDP segment handled independently of

others

* reliable transfer still possible:
 add reliability at application layer
 application-specific error recovery!

| was gonna tell you guys a joke about UDP...

But you might not get it | was you guys about UDP might not |°

Connectionless demux: example

Host receives 2 UDP segments:
* checks dst port, directs segment to socket w/that port
o different src IP or port but same dst port = same socket

host: IP
address A

application must sort it out

sources
application

= 9157w

9157| 6428

destination
application
= 6428w
traﬂs ort
nefwork
ink
phy ical D
=
server: |IP
address B
src dst

5785| 6428

sources
application

w 8775 m

tran

net
li

ysical

ph

%port

ork

K

host: IP S
address C

UDP Segment Format

32 bits

, source port # | dest port #
length (in bytes) -~ length checksum

of UDP segment, ~oplicat
: : pplication message
including header (payload)

UDP header size: 8 bytes

(IP address will be added when the segment is turned
into a datagram/packet at the Network Layer) 11

UDP Advantages & Disadvantages

Speed:
* no connection establishment (which can add delay)

* no congestion control: UDP can blast away as fast as
desired

Simplicity:
* no connection state at sender, receiver
* small header size (8 bytes)

(Possibly) Extra work for applications:
Need to handle reordering, duplicate suppression,

missing packets
Not all applications will care about these! .

Who uses UDP?

Target Users: streaming multimedia apps

* loss tolerant (occasional packet drop OK)
* rate sensitive (want constant, fast speeds)

UDP is good to build on

13

Applications & their transport protocols

Application-Layer Underlying Transport
Application Protocol Protocol
Electronic mail SMTP TCP
Remote terminal access Telnet TCP
Web HTTP TCP
File transfer FTP TCP
Remote file server NFS Typically UDP
Streaming multimedia typically proprietary UDP or TCP
Internet telephony typically proprietary UDP or TCP
Network management SNMP Typically UDP
Routing protocol RIP Typically UDP
Name translation DNS Typically UDP

Transmission Control Protocol (TCP)

* Reliable, ordered communication
» Standard, adaptive protocol that delivers good-
enough performance and deals well with

congestion
* All web traffic travels over TCP/IP

* Why? enough applications demand reliable ordered

delivery that they should not have to implement
their own protocol

15

TCP Segment Format

HL: header len

U: urgent data

A: ACK # valid

P: push data now
RST, SYN, FIN:

connection commands
(setup, teardown)

bytes receiver
willing to accept

32 bits

source port #

dest port #

segquence number

acknowledgment number

HL

/U|AlPR|S| F

receive window

checksum

urg data pointer

options (variable length)

i

application message
(payload)

TCP header size: 20-60 bytes

(IP address will be added when the segment is turned
into a datagram/packet at the Network Layer) 16

TCP Connections

* TCP is connection oriented
Sk Aconnectionisinitiated with a
three-way handshake
* Three-way handshake ensures
YN against duplicate SYN packets

of
NN, pot * Takes 3 packets, 1.5 RTT
S

(Round Trip Time)

SYN = Synchronize
ACK = Acknowledgment

I would tell you a joke about TCP... If only to be acknowledged 17

TCP Handshakes

3-way handshake establishes common state on
both sides of a connection.
Both sides will:
* have seen one packet from the other side -
know what the first seg# ought to be
* know that the other side is ready to receive

Server will typically create a new socket for the
client upon connection.

18

TCP Sockets

Server host may support many
simultaneous TCP sockets

Each socket identified by its own 4-tuple
* source |IP address
* source port number
» dest IP address
 dest port number

Connection-oriented demux: receiver
uses all 4 values to direct segment to
appropriate socket

19

Connection-oriented demux: example

Host receives 3 TCP segments:
o all destined to IP addr B, port 80
- demuxed to different sockets with socket’s 4-tuple

sources
application

= 915 w

trangport
network
= limk
= hykical
host: IP)

destination (D process
application Spocket
B 80U\BI 8CJJB| 80 sources
Al918 | C|B17| [.C|915], =
_ application
trapdport
neYr rk . 915 .|l 817 |,

server: |IP
address B network

ohysical b

host: IP

address A

=l
address C .

TCP Packets

Each packet carries a unique sequence #
* Theinitial numberis chosen randomly
* The SEQ is incremented by the data length

4410 simplification: just increment by 1

Each packet carries an acknowledgment
* Acknowledge a set of packets by ACK-ing
the latest SEQ received

Reliable transport is implemented using
these identifiers

21

TCP Usage Pattern

3 round-trips:

\ 1. setup aconnection
NN

2. send data & receive a response

SYN
S
NS df 3. tear down connection
C/(Of
DA .
\ FINs work (mostly) like SYNs to

tear down connection

Need to wait after a FIN for
FIN, Ack straggling packets

22

Reliable transport
* Sender-side: TCP keeps a

ATA’ Seqg~
=1, copy of all sent, but

unacknowledged packets

y * If acknowledgment does

%‘ s not arrive within a “send
"9=18 timeout” period, packet is
Send timeout resent
D * Send timeout adjusts to the

ATA
y S M
&q=7 round-trip dela
8
-9 Here's a joke about TCP.
acK Did you get it?
Did you get it?
& v Did you get it? -
Did you get it?

How long does it take to send a segment?

* S:size of segment in bytes
* L:one-way latency in seconds
* B: bandwidth in bytes per second

* Then the time between the start of sending and the
completion of receiving is about L + S/B seconds
(ignoring headers)

 And another L seconds (total: 2L + S/B) before the

acknowledgment is received by the sender
* assuming ack segments are small

* The resulting end-to-end throughput (without
pipelining) would be about S/ (2L + S/B) bytes/second

24

TCP timeouts

What is a good timeout period ?
- Goal: improve throughput without unnecessary transmissions

NewAverageRTT = (1 - o) OldAverageRTT + o LatestRTT
NewAverageVar = (1 - B) OldAverageVar + B LatestVar
where LatestRTT = (ack _receive time - send time),
LatestVar = |LatestRTT - AverageRTT]|,
o =1/8, B = % typically.

Timeout = AverageRTT + 4*AverageVar

- Timeout is a function of RTT and variance

Pipelined Protocols

Pipelining: sender allows multiple, “in-flight”,

yet-to-be-acknowledged packets

* increases throughput

* need buffering at sender and receiver
* How big should the window be?

. What if a packetin the mlddle goes missing?

AAAAAA

.dataP s

EEEEEEEEE

GRE T $ AMTs. 0
SIN Gre z‘S Juak

GRET y AMTS.,
SIN Gre z‘S Juak

=, | 26

Example: TCP Window Size =4

When first item in
window is mp
acknowledged,
sender can send
the 5t item.

27

How much data “fits” in a pipe?

Suppose:

* b/wis b bytes /second
* RTT is r seconds

* ACKis a small message

-> you can send b*r bytes before
receiving an ACK for the first byte

(but b/w and RTT are both variable...)

28

TCP Fast Retransmit

€m Receiver detects a lost packet
(i.e., a missing seq), ACKs the
last id it successfully received

Sender can detect the loss
/ without waiting for timeout

29

TCP Fast Retransmit

€m Receiver detects a lost packet
(i.e., a missing seq), ACKs the

ack L
8 d:ita 18 last id it successfully received
q
M Sender can detect the loss
/ without waiting for timeout

30

TCP Congestion Control

Additive-Increase/Multiplicative-Decrease (AIMD):

* window size++ every RTT if no packets dropped
* window size/2 if packet is dropped

- drop evident from the acknowledgments

- slowly builds up to max bandwidth, and hover there
- Does not achieve the max possible
+ Shares bandwidth well with other TCP connections

This linear-increase, exponential backoff in the face of
congestion is termed TCP-friendliness

31

TCP Window Size

e Linear increase (Assuming no other losses

. : in the network except
Exponential backott those due to bandwidth)

Max Bandwidth

Window Sizes:
1,2,3,4,5,6,7,8,9,10,
5,6,7,8,9,10,
5,6,7,8,9,10,

Bandwidth

Time

32

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/k

TCP connection 1

&/
g\@ L O,
Q/oottleneck

router
capacity R

TCP connection 2

33

Why is TCP fair?

Two competing sessions:

* additive increase gives slope of 1, as throughout increases
* multiplicative decrease decreases throughput
proportionally

equal bandwidth share

congestion avoidance: additive increase
loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput =

Connection 1 throughput R 34

TCP Slow Start (horrible name)

Problem: Host A Host B
* linear increase takes a long time to q =
build up a window size that = "

matches the link bandwidth*delay ! m———onesegmene
* most file transactions are short 1
—> TCP spends a lot of time with small w

windows, never reaching large

window size

Solution: Allow TCP to increase
window size by doubling until first loss

Initial rate is slow but ramps up
exponentially fast

TCP Slow Start

* |nitial phase: exponential increase
* Assuming no other losses in the network
except those due to bandwidth

Max Bandwidth

Bandwidth

Time

36

TCP Summary

* Reliable ordered message delivery
- Connection oriented, 3-way handshake
* Transmission window for better
throughput
- Timeouts based on link parameters
* Congestion control
- Linear increase, exponential backoff
* Fast adaptation
- Exponential increase in the initial phase

37

