
File Systems

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

Logging and
LFS

• Filesystems consist of multiple data
structures
• Free list and directory tree (e.g. inodes)

• Many FS operations require a sequence
of updates to multiple data structures

• Need to atomically move FS from one
valid state to another

• Crashes can occur at any time!

The Consistent Update Problem

3

• 6 blocks, 6 inodes

Example: Tiny FFS

4

I1 D10 0 0 0 1 00 1 0 0 0 0

Inode bitmap Data bitmap i-nodes Data blocks

Owner: edward
Permissions: 644
Size: 1
Pointer: 4
Pointer: null
Pointer: null
Pointer: null

We want to append a new
data block to the file

• 6 blocks, 6 inodes

Example: Tiny FFS

5

I1 D1 D20 0 0 0 1 00 1 0 0 0 0

Inode bitmap Data bitmap i-nodes Data blocks

Owner: edward
Permissions: 644
Size: 1
Pointer: 4
Pointer: null
Pointer: null
Pointer: null

We want to append a new
data block to the file
1. Add new data block D2

• 6 blocks, 6 inodes

Example: Tiny FFS

6

I1 D1 D20 0 0 0 1 00 1 0 0 0 0

Inode bitmap Data bitmap i-nodes Data blocks

Owner: edward
Permissions: 644
Size: 2
Pointer: 4
Pointer: 5
Pointer: null
Pointer: null

We want to append a new
data block to the file
1. Add new data block D2
2. Update inode

• 6 blocks, 6 inodes

Example: Tiny FFS

7

I1 D1 D20 0 0 0 1 10 1 0 0 0 0

Inode bitmap Data bitmap i-nodes Data blocks

Owner: edward
Permissions: 644
Size: 2
Pointer: 4
Pointer: 5
Pointer: null
Pointer: null

We want to append a new
data block to the file
1. Add new data block D2
2. Update inode
3. Update free list

(data bitmap)

What if a crash/power outage occurs between writes?

Worse: Writes do not occur in order! (C-SCAN?)

• Just the data block (D2) is written to disk
• Data is written, but no way to get to it – in fact, D2

still appears as a free block
• Write is lost, but FS data structures are consistent

• Just the updated inode (Iv2) is written to disk
• If we follow the pointer, we read garbage
• File system inconsistency: data bitmap says block is

free, while inode says it is used

• Just the updated bitmap is written to disk
• File system inconsistency: data bitmap says data

block is used, but no inode points to it. The block will
never be used

When Only One Write Succeeds

8

• Inode and data bitmap updates succeed
• Good news: file system is consistent!
• Bad news: reading new block returns

garbage

• Inode and data block updates succeed
• File system inconsistency (with free list)

• Data bitmap and data block succeed
• File system inconsistency
• No idea which file data block belongs to!

When Two Writes Succeed

9

• Upon reboot, scan disk, see if filesystem
is in consistent state

• Detect and repair filesystem errors

• Unix: fsck (file system check)
• Windows: scandisk

Solution 1: File System Checker

10

1. Sanity check the superblock
2. Check validity of free block and inode

bitmaps
3. Check that inodes are not corrupted
4. Check inode links
5. Check for duplicates
6. Check directories

FSCK Summary

11

• Scan inodes, traversing trees, to see
which blocks are allocated

• Build table of blocks, keeping track of
status (used or free)

• On inconsistency, overwrite free bitmap

Checking Validity of Free Bitmaps

12

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

used
Missing Block 2

(add it to the free list)
free list

Use a per-file table instead of per-block
Parse entire directory structure, starting at root
• Increment counter for each file you encounter
• This value can be >1 due to hard links
• Symbolic links are ignored

Compare table counts w/link counts in i-node
• If i-node count > our directory count (wastes space):

Reduce i-node count to correct count
• If i-node count < our directory count (catastrophic):

Add lost file to lost+found directory

Checking Inode Links

13

1. Sanity check the superblock
2. Check validity of free block and inode

bitmaps
3. Check that inodes are not corrupted
4. Check inode links
5. Check for duplicates
6. Check directories

FSCK Summary

14

Very Slow, Scales Badly

AKA “Write Ahead Logging”

• Turns multiple updates into a single disk
write

• Write ahead a short note to a log,
specifying changes about to be made to
FS data structures

• If a crash occurs while writing to data
structures, consult log to determine what
to do
• No need to scan entire disk!

Solution 2: Journaling

15

• We want to add a new block to the file
• Three easy steps
• Write to the log 5 blocks:

- write each record to a block, so it is atomic

• Write the blocks for Iv2, B2, D2 to the FS proper
• Mark the transaction free in the journal

• What if we crash before the log is updated?
• if no commit, nothing made it into FS - ignore

changes!
• What if we crash after the log is updated?
• replay changes in log back to disk!

Data Journaling Example

16

I1 D10 0 0 0 1 00 1 0 0 0 0

Inode bitmap Data bitmap i-nodes Data blocks

TxBegin Iv2 B2 D2 TxEnd

• Issuing the 5 writes to the log
sequentially is slow
• Issue at once, and transform into a single sequential

write?

• Problem: disk can schedule writes out of order
• first write TxBegin, Iv2, B2, TxEnd
• then write D2

• Log contains:
• syntactically, transaction log looks fine, even with

nonsense in place of D2!

• Set a Barrier before TxEnd
• TxEnd must block until data on disk

Journaling and Write Order

17

TxBegin Iv2 B2 D2 TxEnd

TxBegin Iv2 B2 ?? TxEnd

Crash

Another Approach

18

• Developed in 1990s
• Memory got large enough to cache most reads
• Sequential R/W performance on disks greatly

improved, but not random access
• Lots of seeks to write 1 file kills performance,

but this is exactly what FFS requires

• Idea: Use disk as a log
• Buffer all updates (including metadata!) into an

in-memory segment
• When segment is full, write to disk in a long

sequential transfer to unused part of disk
• Virtually no seeks
• much improved disk throughput

Solution 3: Log-Structured FS

19

• Buffered Updates
• Suppose we want to add a new block to a 0-

sized file
• LFS places both data block and inode in its

in-memory segment

• But how do we find the inode?

LFS Basics

20

D I2

• In Unix FFS, just index into inode array

Finding inodes

21

Super Block Inodes Data Blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

…

To find address of inode 11:
addr(b1) + 11 * size(inode)

512 bytes/block
128 bytes/inode

• Inode map: a table indicating where each inode
is on disk
• Normally cached in memory
• Inode map blocks are written as part of the segment

when updated
• Still no seeking to write to imap☺

• How do we find the blocks of the Inode map?
• Listed in a fixed checkpoint region, updated

periodically – same function as superblock in FFS

Finding Inodes in LFS

22

CR seg 1 seg 2 seg 2free free

Blocks written to create two 1-block files: dir1/file1 and dir2/file2

LFS vs FFS

23

inode

directory

data

inode map

dir1 dir2

file1
file2

Unix FFS

Log-Structured FS

file1 file2

dir1 dir2

• To change data in block 1, create a new block 1
• Update the inode (create a new one)
• Update the imap

Overwriting Data in LFS

24

file1 file2

dir1 dir2

file1

No need to change dir1, since file1
still has the same inode number

Segment 1 Segment 2

• Suppose nothing in memory…
• read checkpoint region
• from it, read and cache entire inode map
• from now on, everything as usual

- read inode

- use inode’s pointers to get to data blocks

• When the imap is cached, LFS reads
involve virtually* the same work as reads
in traditional file systems

Reading from disk in LFS

25
*modulo an imap lookup

• As old blocks of files are replaced by new,
segment in log become fragmented

• Cleaning used to produce contiguous
space on which to write
• compact M fragmented segments into N

new segments, newly written to the log
• free old M segments

Garbage Collection

26

CR seg 1 seg 2 seg 3 seg 4 seg 5

CR seg 4 seg 5 seg 6

free

free

• Cleaning mechanism:
• How can LFS tell which segment blocks are

live and which dead?

- Segment Summary Block

- Replaces free list

• Cleaning policy
• How often should the cleaner run?
• How should the cleaner pick segments?

Garbage Collection

27

• Kept at the beginning of each segment
• For each data block in segment, SSB

holds
• The file the data block belongs to (inode#)
• The offset (block#) of the data block within

the file

Segment Summary Block

28

file1 file2

dir1 dir2

SSB

• During cleaning, to determine whether
data block D is live:
• Use inode# to find in imap where inode is

currently on disk
• Read inode (if not already in memory)
• Check whether pointer for block block#

refers to D’s address
• If not, D is dead

• Update file’s inode with correct pointer if
D is live and compacted to new segment

Segment Summary Block

29

• When?
• When disk is full
• Periodically
• When you have nothing better to do

• Which segments?
• Utilization: how much is gained by cleaning

- Segment usage table tracks how much live data in
segment; implemented in blocks like inode map

• Age: how likely is the segment to change soon

- Better to wait on cleaning a hot segment, since it
will quickly get fragmented again

Which segments to clean, and when?

30

The journal is the file system!
On recovery:
1. Read checkpoint region
• May be out of date (written every 30 sec)
• May be corrupted

- 1) two CR blocks at opposite ends of disk; 2)
timestamp blocks before and after CR

- use CR with latest consistent timestamp blocks

• Use latest CR to initialize inode map,
segment usage table

Crash recovery

31

2. Roll forward
• Start from where checkpoint says log ends

(checkpoint region points to last segment)
• Read through next segments to find valid

updates not recorded in checkpoint

- When a new inode is found, update imap

- When a data block is found that belongs to no
inode, ignore

Crash recovery

32

