File Systems

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

Logging ana

LFS

COMPUTING AND INFORMATION SCIENCE

EE
~

The Consistent Update Problem

* Filesystems consist of multiple data

structures
* Free list and directory tree (e.g. inodes)

* Many FS operations require a sequence
of updates to multiple data structures

* Need to atomically move FS from one
valid state to another

* Crashes can occur at any time!

Example: Tiny FFS
* 6 blocks, 6 inodes

Inode bitmap Data bitmap I-nodes Data blocks
0/1/0]0]0|0]|0J0O]J0O|0O]J1]|O 11 D1

We want to append a new

data block to the file Owner: edward
Permissions: 644
Size: 1
Pointer: 4

Pointer: null
Pointer: null
Pointer: null

Example: Tiny FFS
* 6 blocks, 6 inodes

Inode bitmap Data bitmap I-nodes

Data blocks

0[{1{0|0|0]0]]0]0]0]0]1]0 11

D1

D2

We want to append a new
data block to the file Owner:

1. Add new data block D2 Permissions:

Size:
Pointer:

Pointer:
Pointer:
Pointer:

edward
644

1

4

null
null
null

Example: Tiny FFS
* 6 blocks, 6 inodes

Inode bitmap Data bitmap I-nodes Data blocks
0[{1{0|0|0]0]]0]0]0]0]1]0 11 D1{D2

We want to append a new

data block to the file Owner: edward
1. Add new data block D2 G esonss O
2. Updateinode Pointer: 4

Pointer:
Pointer:
Pointer:

Example: Tiny FFS
* 6 blocks, 6 inodes

Inode bitmap Data bitmap I-nodes Data blocks
0[{1{0|0|0]0]]0]0]J0]J0]1]1 11 D1|D2

We want to append a new

data block to the file Owner: edward
1. Add new data block D2 G esonss O
2. Updateinode Pointer: 4
. Pointer:
3. Update free list Pointer:
(data bitmap) Pointer:

What if a crash/power outage occurs between writes?
Worse: Writes do not occur in order! (C-SCAN?)

When Only One Write Succeeds

e Just the data block (D2) is written to disk
* Datais written, but no way to get to it - in fact, D2
still appears as a free block
 Write is lost, but FS data structures are consistent

 Just the updated inode (Iv2) is written to disk
* |If we follow the pointer, we read garbage
* File system inconsistency: data bitmap says block is
free, while inode says it is used

« Just the updated bitmap is written to disk
* File system inconsistency: data bitmap says data

block is used, but no inode points to it. The block will
never be used

When Two Writes Succeed

* Inode and data bitmap updates succeed
* Good news: file system is consistent!
* Bad news: reading new block returns
garbage
* Inode and data block updates succeed
* File system inconsistency (with free list)
» Data bitmap and data block succeed
* File system inconsistency
* No idea which file data block belongs to!

Solution 1: File System Checker

* Upon reboot, scan disk, see if filesystem
IS In consistent state
* Detect and repair filesystem errors

* Unix: fsck (file system check)
* Windows: scandisk

10

FSCK Summary

1.
2.

o U A W

Sanity check the superblock

Check validity of free block and inode

bitmaps

C

O OO

neck that inodes are not corrupted
neck inode links
neck for duplicates

neck directories

11

Checking Validity of Free Bitmaps

* Scan inodes, traversing trees, to see
which blocks are allocated

* Build table of blocks, keeping track of
status (used or free)

* On inconsistency, overwrite free bitmap

©123456789ABCDETF

Missing Block 2 11b1ezizbeizee used

(add it to the free list) 0001000011000 11 free list

Checking Inode Links

Use a per-file table instead of per-block

Parse entire directory structure, starting at root
* Increment counter for each file you encounter
* Thisvalue can be >1 due to hard links
* Symbolic links are ignored

Compare table counts w/link counts in i-node
* Ifi-node count > our directory count (wastes space):
Reduce i-node count to correct count
* Ifi-node count <our directory count (catastrophic):
Add lost file to lost+found directory

13

FSCK Summary

1.
2.

o U A W

Sanity check the superblock

Check validity of free block and inode

bitmaps

C

O OO

neck that inodes are not corrupted
neck inode links
neck for duplicates

neck directories

Very Slow, Scales Badly

14

Solution 2: Journaling
AKA “Write Ahead Logging”

* Turns multiple updates into a single disk
write

* Write ahead a short note to a log,
specifying changes about to be made to
FS data structures

* If a crash occurs while writing to data
structures, consult log to determine what

to do
* No need to scan entire disk!

15

Data Journaling Example

Inode bitmap Data bitmap I-nodes Data blocks
0/1{0|0]0|0][0]J0|0O0]0O]1|O 11 D1

* We want to add a new block to the file
* Three easy steps
* Write to the log 5 blocks: |mxeegin| v2 | B2 | b2 | TxEnd
- write each record to a block, so it is atomic
* Write the blocks for Iv2, B2, D2 to the FS proper
* Mark the transaction free in the journal
* What if we crash before the log is updated?
* if no commit, nothing made itinto FS - ignore
changes!
* What if we crash after the log is updated?
* replay changes in log back to disk! 16

Journaling and Write Order

* Issuing the 5 writes to the log [wsegin| v2 [52 [b2 | Txend

sequentially is slow
* |ssue at once, and transform into a single sequential
write?
* Problem: disk can schedule writes out of order
* first write TxBegin, Iv2, B2, TxEnd

Crash =—————>

e then write D2

. Log contains: |meegin| v2 | B2 | 22 | TxEnd
 syntactically, transaction log looks fine, even with
nonsense in place of D2!
» Set a Barrier before TxEnd
 TxEnd must block until data on disk

Another Approach

Solution 3: Log-Structured FS

* Developed in 1990s
* Memory got large enough to cache most reads
* Sequential R/W performance on disks greatly
improved, but not random access
* Lots of seeks to write 1 file kills performance,
but this is exactly what FFS requires

* [dea: Use disk as a log
» Buffer all updates (including metadata!) into an
In-memory segment
* When segment is full, write to disk in a long
sequential transfer to unused part of disk
* Virtually no seeks
* much improved disk throughput

19

LFS Basics

* Buffered Updates
* Suppose we want to add a new block to a 0-
sized file
* LFS places both data block and inode in its
In-memory segment

I-1:

 But how do we find the inode?

Finding inodes
* In Unix FFS, just index into inode array

512 bytes/block
128 bytes/inode

Super Block | Inodes . Data Blocks
b0 ibl b2 b3 b4 b5 b6 b7 b8 b9 bl0 i bll
10 [4] [8] [12] [16] [20] |24] [28] (32| [36]

1] [5] [9] [13] [17] [21] [25] [29] [33] [37]

(2] [6] [10] [14] [18] [22) 26 [30] [34] [s8
3| [7] [11] [15] [29] [23] [27] [31] [35] [39)]

To find address of inode 11:
addr(bl) + 11 * size(inode)

Finding Inodes in LFS

* Inode map: a table indicating where each inode

Is on disk

* Normally cached in memory

* |node map blocks are written as part of the segment
when updated

* Still no seeking to write to imap ©

* How do we find the blocks of the Inode map?

 Listed in a fixed checkpoint region, updated

periodically - same function as superblock in FFS

CR seg 1 free seg 2 seg 2 free

LFS vs FFS

Blocks written to create two 1-block files: dirl/filel and dir2/file2

filel file2
dirl dir2
: inode
Unix FFS B
B directory
B data
dirl dir2 B inodemap
filel file2

Log-Structured FS

Overwriting Data in LFS

* To change datain block 1, create a new block 1
« Update the inode (create a new one)
* Update theimap

dirl dir2

Segment 1 i i Segment 2
filel file2 filel

No need to change dirl, since filel
still has the same inode number

Reading from disk in LFS

* Suppose nothing in memory...
* read checkpoint region
* from it, read and cache entire inode map
* from now on, everything as usual

- read inode
- use inode’s pointers to get to data blocks

* When the imap is cached, LFS reads
involve virtually™ the same work as reads
in traditional file systems

*modulo an imap lookup o

Garbage Collection

* As old blocks of files are replaced by new,
segment in log become fragmented
* Cleaning used to produce contiguous

space on which to write

* compact M fragmented segments into N
new segments, newly written to the log

 free old M segments

CR segl seg2 seg3 seg4 segs free

free seg4 seg5 seghb

Garbage Collection

* Cleaning mechanism:
* How can LFS tell which segment blocks are
ive and which dead?

- Segment Summary Block

- Replaces free list
* Cleaning policy
* How often should the cleaner run?
* How should the cleaner pick segments?

27

Segment Summary Block

» Kept at the beginning of each segment
» For each data block in segment, SSB
holds
* The file the data block belongs to (inode#)

* The offset (block#) of the data block within
the file

dirl dir2

SSB filel file2

Segment Summary Block

* During cleaning, to determine whether

data block D is live:

* Useinodet# to find in imap where inode is
currently on disk

* Read inode (if not already in memory)

* Check whether pointer for block block#
refers to D’s address

 If not, D is dead

» Update file’s inode with correct pointer if
D is live and compacted to new segment

29

Which segments to clean, and when?

* When?
* When diskis full
* Periodically
* When you have nothing better to do
* Which segments?
 Utilization: how much is gained by cleaning

- Segment usage table tracks how much live data in
segment; implemented in blocks like inode map

* Age: how likely is the segment to change soon

- Better to wait on cleaning a hot segment, since it
will quickly get fragmented again

30

Crash recovery

The journal is the file system!
On recovery:

1. Read checkpoint region
* May be out of date (written every 30 sec)
* May be corrupted

- 1) two CR blocks at opposite ends of disk; 2)
timestamp blocks before and after CR
- use CR with latest consistent timestamp blocks
» Use latest CR to initialize inode map,
segment usage table

31

Crash recovery

2. Roll forward
 Start from where checkpoint says log ends
(checkpoint region points to last segment)
* Read through next segments to find valid
updates not recorded in checkpoint

- When a new inode is found, update imap

- When a data block is found that belongs to no
inode, ignore

32

