
File Systems

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

I/O systems are accessed
through a series of
layered abstractions

The abstraction stack

File System API

& Performance

Device

Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

The Block Cache

File System API

& Performance

Device

Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

• a cache for the disk
• caches recently read blocks
• buffers recently written blocks
• serves as synchronization point

(ensures a block is only fetched
once)

More Layers (not a 4410 focus)

File System API

& Performance

Device

Access

• allows data to be read or
written in fixed-sized blocks

• uniform interface to
disparate devices

• translate between OS
abstractions and hw-
specific details of I/O
devices

• Control registers, bulk data
transfer, OS notifications

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

Process Memory? (why is this a bad idea?)

• Size is limited to size of virtual address space
• Data lost when the application terminates
• Even if the computer doesn’t crash!
• Multiple processes might want to access the

same data

Where shall we store our data?

5

Long-term Information Storage Needs
• large amounts of information

• information must survive processes

• need concurrent access by multiple processes

Solution: the File System Abstraction
• Presents applications w/ persistent, named data

• Two main components:
• Files

• Directories

File Systems 101

6

• File: a named collection of data
• has two parts
• data – what a user or application puts in it

- array of untyped bytes

• metadata – information added and managed
by the OS

- size, owner, security info, modification time

The File Abstraction

7

1. Files are abstracted unit of information
2. Don’t care exactly where on disk the file is

➜ Files have human readable names
• file given name upon creation
• use the name to access the file

First things first: Name the File!

8

Naming Conventions
• Some things OS dependent:

Windows not case sensitive, UNIX is
• Some things common:

Usually ok up to 255 characters

File Extensions, OS dependent:
• Windows:

- attaches meaning to extensions

- associates applications to extensions

• UNIX:
- extensions not enforced by OS

- Some apps might insist upon them (.c, .h, .o, .s, for C compiler)

Name + Extension

9

Directory: provides names for files
• a list of human readable names
• a mapping from each name to a specific

underlying file or directory

Directory

10

directory index
structure

Storage
Block

File
Number

871

File
Name:

foo.txt

Absolute: path of file from the root directory

/home/ada/projects/babbage.txt

Relative: path from the current working directory

(current working dir stored in process’ PCB)

2 special entries in each UNIX directory:
“.” current dir

“..” for parent

To access a file:
• Go to the folder where file resides —OR—

• Specify the path where the file is

Path Names

11

Directories

12

all files
OS uses path name to find directory
Example: /home/tom/foo.txt

Directory:

maps file name to attributes & location

2 options:

• directory stores attributes

• files’ attributes stored elsewhere

• Create a file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file
• Truncate a file

Basic File System Operations

13

Just map keys (file names) to values (block

numbers on disk)?

How shall we implement this?

14

Performance: despite limitations of disks
• leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse
workloads, not just FS for X

Persistence: maintain/update user data + internal
data structures on persistent storage devices

Reliability: must store data for long periods of
time, despite OS crashes or HW malfunctions

Challenges for File System Designers

15

Directories
• file name ➜ file number

Index structures
• file number ➜ block

Free space maps
• find a free block; better: find a free block nearby

Locality heuristics
• policies enabled by above mechanisms

- group directories

- make writes sequential

- defragment

Implementation Basics

16

Most files are small
• need strong support for small files
• block size can’t be too big

Some files are very large
• must allow large files
• large file access should be reasonably efficient

File System Properties

17

Files can be allocated in different ways:

• Contiguous allocation

All bytes together, in order

• Linked Structure

Each block points to the next block

• Indexed Structure

Index block points to many other blocks

Which is best?
• For sequential access? Random access?

• Large files? Small files? Mixed?

Storing Files

19

All bytes together, in order

+ Simple: state required per file: start block & size

+ Efficient: entire file can be read with one seek

– Fragmentation: external is bigger problem

– Usability: user needs to know size of file at time of creation

Used in CD-ROMs, DVDs

Contiguous Allocation

20

file1 file2 file3 file4 file5

Each file is stored as linked list of blocks
• First word of each block points to next block
• Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation

+ Simple: only need to store 1st block of each file

– Performance: random access is slow

– Space Utilization: overhead of pointers

Linked List Allocation

21

File
block

0

next

File
block

1

next

File
block

2

next

File
block

3

next

File
block

4

next

File A

Physical
Block

7 8 33 17 4

Microsoft File Allocation Table
• originally: MS-DOS, early version of Windows
• today: still widely used (e.g., CD-ROMs, thumb drives,

camera cards)
• FAT-32, supports 228 blocks and files of 232-1 bytes

File table:
• Linear map of all blocks on disk
• Each file a linked list of blocks

File Allocation Table (FAT) FS

22

[late 70’s]

data

next

data

next

data

next

data

32 bit entries

FAT File System

23

• 1 entry per block
• EOF for last block
• 0 indicates free block
• directory entry maps
name to FAT index

Directory

bart.txt 9

maggie.txt 12

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0

Folder: a file with 32-byte entries
Each Entry:
• 8 byte name + 3 byte extension (ASCII)
• creation date and time
• last modification date and time
• first block in the file (index into FAT)
• size of the file
• Long and Unicode file names take up

multiple entries

FAT Directory Structure

24

+ Simple: state required per file: start block only
+ Widely supported
+ No external fragmentation
+ block used only for data

How is FAT Good?

25

How is FAT Bad?

26

• Poor locality
• Many file seeks unless entire FAT in memory:

Example: 1TB (240 bytes) disk, 4KB (212) block
size, FAT has 256 million (228) entries (!)
4 bytes per entry ➜ 1GB (230) of main
memory required for FS (a sizeable overhead)

• Poor random access
• Limited metadata
• Limited access control
• Limitations on volume and file size
• No support for reliability techniques

