Disks and RAID

CS 4410 Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse]

Storage Devices

- Magnetic disks
 - Storage that rarely becomes corrupted
 - Large capacity at low cost
 - Block level random access
 - Slow performance for random access
 - Better performance for streaming access
- Flash memory
 - Storage that rarely becomes corrupted
 - Capacity at intermediate cost (50x disk)
 - Block level random access
 - Good performance for reads; worse for random writes

Magnetic Disks are 60 years old!

THAT WAS THEN

- 13th September 1956
- The IBM RAMAC 350
- Total Storage = 5 million characters (just under 5 MB)

THIS IS NOW

- 2.5-3.5" hard drive
- Example: 500GB Western Digital Scorpio Blue hard drive
- easily up to 1 TB

RAM (Memory) vs. HDD (Disk), 2018

	RAM	HDD	
Typical Size	8 GB	1 TB	
Cost	\$10 per GB	\$0.05 per GB	
Power	3 W	2.5 W	
Latency	15 ns	15 ms	
Throughput (Sequential)	8000 MB/s	175 MB/s	
Read/Write Granularity	word	sector	
Power Reliance	volatile	non-volatile	

Reading from disk

Must specify:

cylinder #
 Surface (distance from spindle)

- head #
- sector #
- transfer size
- memory address

Disk Tracks

- ~ 1 micron wide (1000 nm)
 - Wavelength of light is ~ 0.5 micron
 - Resolution of human eye: 50 microns
 - 100K tracks on a typical 2.5" disk

Track length varies across disk

- Outside:
 - More sectors per track
 - Higher bandwidth
- Most of disk area in outer regions

Disk overheads

Disk Latency = **Seek Time** + **Rotation Time** + Transfer Time

- Seek: to get to the track (5-15 millisecs (ms))
- Rotational Latency: to get to the sector (4-8 millisecs (ms))
 (on average, only need to wait half a rotation)
- Transfer: get bits off the disk (25-50 microsecs (μs)

Disk Scheduling

Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Metric: how many cylinders traversed?

Disk Scheduling: FIFO

- Schedule disk operations in order they arrive
- Downsides?

FIFO Schedule?
Total head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: Shortest Seek Time First

- Select request with minimum seek time from current head position
- A form of Shortest Job First (SJF) scheduling
- Not optimal: suppose cluster of requests at far end of disk → starvation!

SSTF Schedule? Total head movement?

Head pointer @ 53 Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: SCAN

Elevator Algorithm:

- arm starts at one end of disk
- moves to other end, servicing requests
- movement reversed @ end of disk
- repeat

SCAN Schedule? Total head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: C-SCAN

Circular list treatment:

- head moves from one end to other
- servicing requests as it goes
- reaches the end, returns to beginning
- no requests serviced on return trip
- + More uniform wait time than SCAN

C-SCAN Schedule? Total Head movement?(?)

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Terminology: SCAN vs LOOK

- SCAN: Continue moving head to end of disk, even if there are no more requests
 - Extra tracks of movement: from 14 to 0, then back to 65
- LOOK: Reverse direction as soon as there are no more requests in this direction
 - C-LOOK: Reset to beginning as soon as there are no more requests in forward direction
- LOOK versions are what we actually use
- SCAN was easier to implement

RAM vs. HDD vs SSD, 2018

	RAM	HDD	SSD
Typical Size	8 GB	1 TB	256 GB
Cost	\$10 per GB	\$0.05 per GB	\$0.32 per GB
Power	3 W	2.5 W	1.5 W
Read Latency	15 ns	15 ms	30 μs
Read Speed (Seq.)	8000 MB/s	175 MB/s	550 MB/s
Read/Write Granularity	word	sector	page*
Power Reliance	volatile	non-volatile	non-volatile
Write Endurance	*	**	100 TB

Solid State Drives (Flash)

Most SSDs based on NAND-flash

retains its state for months to years without power

Metal Oxide Semiconductor Field Effect **Transistor** (MOSFET)

Floating Gate MOSFET (FGMOS)

NAND Flash

Charge is stored in Floating Gate (can have Single and Multi-Leve Cells) Contro Source Drain Gate Floating Thin Oxide Gate Layer Electrons n+ n+ p substrate

Floating Gate MOSFET (FGMOS)

Flash Operations

- Erase block: sets each cell to "1"
 - erase granularity = "erasure block" = 128-512 KB
 - time: several ms
- Write page: can only write erased pages
 - write granularity = 1 page = 2-4KBytes
 - time: 10s of milliseconds
- Read page:
 - read granularity = 1 page = 2-4KBytes
 - time: 10s of microseconds

Flash Limitations

- can't write 1 byte/word (must write whole blocks)
- limited # of erase cycles per block (memory wear)
 - 10³-10⁶ erases and the cell wears out
 - reads can "disturb" nearby words and overwrite them with garbage

Lots of techniques to compensate:

- error correcting codes
- bad page/erasure block management
- wear leveling: trying to distribute erasures across the entire driver

Flash Translation Layer

Flash device firmware maps logical page # to a physical location

- Garbage collect erasure block by copying live pages to new location, then erase
 - More efficient if blocks stored at same time are deleted at same time (e.g., keep blocks of a file together)
- Wear-levelling: only write each physical page a limited number of times
- Remap pages that no longer work (sector sparing)

Transparent to the device user

Disk Failure Cases

(1) Isolated Disk Sectors (1+ sectors down, rest OK)

Permanent: physical malfunction (magnetic coating, scratches, contaminants)

Transient: data corrupted but new data can be successfully written to / read from sector

(2) Entire Device Failure

- Damage to disk head, electronic failure, wear out
- Detected by device driver, accesses return error codes
- Annual failure rates or Mean Time To Failure (MTTF)

What do we want from storage?

- Fast: data is there when you want it
- Reliable: data fetched is what you stored
- Affordable: won't break the bank

Enter: Redundant Array of Inexpensive Disks (RAID)

- In industry, "I" is for "Independent"
- The alternative is SLED, single large expensive disk
- RAID + RAID controller looks just like SLED to computer (yay, abstraction!)

RAID-0

Files striped across disks

+ Fast

latency? throughput?

- + Cheap
- Unreliable

Disk 0

stripe 0

stripe 2

stripe 4

stripe 6

stripe 8

stripe 10

stripe 12

stripe 14

Disk 1

stripe 1

stripe 3

stripe 5

stripe 7

stripe 9

stripe 11

stripe 13

stripe 15

Striping and Reliability

Striping reduces reliability

- More disks → higher probability of some disk failing
- N disks: 1/Nth mean time between failures of 1 disk

What can we do to improve Disk Reliability?

RAID-1

Disks Mirrored:

data written in 2 places

- + Reliable
- + Fast

latency? throughput?

Expensive

Disk 0	Disk 1
data 0	data 0
data 1	data 1
data 2	data 2
data 3	data 3
data 4	data 4
data 5	data 5
data 6	data 6
data 7	data 7
	•••

RAID-2

bit-level striping with ECC codes

- 7 disk arms synchronized, move in unison
- Complicated controller (→ very unpopular)
- Detect & Correct 1 error with no performance degradation

+ Reliable

Expensive

parity 1 = $3 \oplus 5 \oplus 7$ (all disks whose # has 1 in LSB, xx1)

parity $2 = 3 \oplus 6 \oplus 7$ (all disks whose # has 1 in 2^{nd} bit, x1x)

parity $4 = 5 \oplus 6 \oplus 7$ (all disks whose # has 1 in MSB, 1xx)

RAID-2 Generating Parity

```
parity \mathbf{1} = 3 \oplus 5 \oplus 7 (all disks whose # has 1 in LSB, xx1)

= a \oplus b \oplus d = 1 \oplus 1 \oplus 1 = \mathbf{1}

parity \mathbf{2} = 3 \oplus 6 \oplus 7 (all disks whose # has 1 in 2<sup>nd</sup> bit, x1x)

= a \oplus c \oplus d = 1 \oplus 0 \oplus 1 = \mathbf{0}

parity \mathbf{4} = 5 \oplus 6 \oplus 7 (all disks whose # has 1 in MSB, 1xx)

= b \oplus c \oplus d = 1 \oplus 0 \oplus 1 = \mathbf{0}
```


RAID-2 Detect and Correct

I flipped a bit. Which one?

```
parity \mathbf{1} = 3 \oplus 5 \oplus 7 (all disks whose # has 1 in LSB, xx1)

= a \oplus b \oplus d = 1 \oplus 1 \oplus 0 = \mathbf{0} \leftarrow \mathbf{problem}

parity \mathbf{2} = 3 \oplus 6 \oplus 7 (all disks whose # has 1 in 2<sup>nd</sup> bit, x1x)

= a \oplus c \oplus d = 1 \oplus 0 \oplus 0 = \mathbf{1} \leftarrow \mathbf{problem}

parity \mathbf{4} = 5 \oplus 6 \oplus 7 (all disks whose # has 1 in MSB, 1xx)

= b \oplus c \oplus d = 1 \oplus 0 \oplus 0 = \mathbf{1} \leftarrow \mathbf{problem}
```


Problem @ xx1, x1x, 1xx \rightarrow 111, d was flipped

2 more rarely-used RAIDS

RAID-3: byte-level striping + parity disk

- read accesses all data disks
- write accesses all data disks + parity disk
- On disk failure: read parity disk, compute missing data
- RAID-4: block-level striping + parity disk
- + better spatial locality for disk access

- + Cheap
- Slow Writes
- Unreliable

parity disk is write bottleneck and wears out faster

RAID 5: Rotating Parity w/Striping

- + Reliable
- + Fast
- + Affordable

What if you have 2 simultaneous failures? (A second failure while recovering from the first?)

5	Disk 0	7
	parity 0-3	П
	data 4	П
	data 8	П
	data 12	П
l	data 16	П

RAID 6: Additional Parity Blocks

- + More Reliable
- + Fast
- Slightly less affordable

