
Virtual Memory & Caching

CS 4410
Operating Systems

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

This time: Virtual Memory & Caching

Last Time: Address Translation

2

3

• Virtual Memory
• Caching

• Each process has illusion of large address space
• 264 for 64-bit addressing

• However, physical memory is much smaller
• How do we give this illusion to multiple processes?
• Virtual Memory: some addresses reside in disk

What is Virtual Memory?

44Physical memory

Disk

Virtual memory

page 0

page 1

page 2

page 3

page 4

page N

Page Table

Swapping
• Loads entire process in memory, runs it, exit
• “Swap in” or “Swap out” a process
• Slow (for big, long-lived processes)
• Wasteful (might not require everything)

Paging
• Runs all processes concurrently
• A few pages from each process live in memory
• Finer granularity, higher performance
• Large virtual mem supported by small physical mem

“to swap” (pushing contents out to disk in order to bring
other content from disk) ≠ “swapping”

Swapping vs. Paging

5

Mapped
• to a physical frame

Not Mapped (→ Page Fault)
• in a physical frame, but not currently mapped
• still in the original program file
• zero-filled (heap/BSS, stack)
• on backing store (“paged or swapped out”)
• illegal: not part of a segment

→ Segmentation Fault

(the contents of) A Virtual Page Can Be

6

Modify Page Tables with a valid bit (= “present bit”)
• Page in memory → valid = 1
• Page not in memory → PT lookup triggers page fault

32 :V=1
4183:V=0
177 :V=1
5721:V=0

Supporting Virtual Memory

7

Disk

Mem

Page Table

0
1
2
3

Identify page and reason (r/w/x)

• access inconsistent w/ segment access rights
→ terminate process

• access of code or data segment:
→ does frame with the code/data already exist?
No? Allocate a frame & bring page in (next slide)

• access of zero-initialized data (BSS) or stack
• Allocate a frame, fill page with zero bytes

Handling a Page Fault

8

• Find a free frame
- or evict one from memory (next slide)

- which one? (next lecture)

• Issue disk request to fetch data for page
- what to fetch? (requested page or more?)

• Block current process
• Context switch to new process
• When disk completes, set valid bit to 1 (&

other permission bits), put current process
in ready queue

When a page needs to be brought in…

9

• Find all page table entries that refer to old page
- Frame might be shared
- Core Map (frames → pages)

• Set each page table entry to invalid
• Remove any TLB entries

- Hardware copies of now invalid PTE
- “TLB Shootdown”

• Write changes on page back to disk, if needed
- Dirty/Modified bit in PTE indicates need
- Text segments are (still) on program image on disk

When a page is swapped out…

10

Valid Protection	R/W/X Ref Dirty Index

1. TLB miss
2. Trap to kernel
3. Page table walk
4. Find page is invalid
5. Convert virtual

address to file + offset
6. Allocate frame

• Evict if needed
7. Initiate disk block

read into frame

8. Disk interrupt when
DMA complete

9. Mark page valid
10. Update TLB
11. Resume process at

faulting instruction
12. Execute instruction

Demand Paging, MIPS style

11

1. TLB miss
2. Page table walk
3. Page fault (find page

is invalid)
4. Trap to kernel
5. Convert virtual

address to file + offset
6. Allocate frame

• Evict if needed
7. Initiate disk block

read into frame

8. Disk interrupt when
DMA complete

9. Mark page valid
10. Resume process at

faulting instruction
11. TLB miss
12. Page table walk to

fetch translation
13. Execute instruction

Demand Paging, x86 style

12

• Save current process’ registers in PCB
• Also Page Table Base Register (PTBR)

• Flush TLB (if no pids)
• Page Table itself is in main memory
• Restore registers of next process to run
• “Return from Interrupt”

Updated Context Switch

13

Process Creation
• Allocate frames, create & initialize page table

& PCB

Process Execution
• Reset MMU (PTBR) for new process
• Context switch: flush TLB (or TLB has pids)
• Handle page faults

Process Termination
• Release pages

OS Support for Paging

14

15

• Virtual Memory
• Caching

• TLBs
• hardware caches
• internet naming
• web content
• web search
• email clients
• incremental compilation
• just in time translation
• virtual memory
• file systems
• branch prediction

What are some examples of caching?

16

Every layer is a cache for the layer below it.

Memory Hierarchy

17

Working Set

18

at what point does the working set of this
application fit in the cache?

1. Collection of a process’ most recently used pages
(The Working Set Model for Program Behavior, Denning,’68)

2. Pages referenced by process in last Δ time-units

Excessive rate of paging
Cache lines evicted before they can be reused

Causes:
• Too many processes in the system
• Cache not big enough to fit working set
• Bad luck (conflicts)
• Bad eviction policies (later)

Prevention:
• restructure your code

(smaller working set, shift data around)
• restructure your cache (↑ capacity, ↑ associativity)

Thrashing

19

“Thrash” dates from the 1960’s, when disk drives were as large as
washing machines. If a program’s working set did not fit in memory,
the system would need to shuffle memory pages back and forth to
disk. This burst of activity would violently shake the disk drive.

Why “thrashing”?

20

http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

The first hard disk
drive—the IBM
Model 350 Disk

File (came w/IBM
305 RAMAC,

1956).

Total storage =
5 million

characters (just
under 5 MB).

• Assignment: where do you put the data?
• Replacement: who do you kick out?

21

Caching

• Assignment: where do you put the data?

- Which entry in the cache?

- Which frame in memory?

• Replacement: who do you kick out?

22

Caching

— not much choice

— lots of freedom

Memory Caches

23

Fully Associative

Direct Mapped

Set Associative

• Adding a layer of indirection disrupts the
spatial locality of caching

• What if virtual pages are assigned to
physical pages that are n cache sizes
apart?

Address Translation Problem

24

• Adding a layer of indirection disrupts the
spatial locality of caching

• What if virtual pages are assigned to
physical pages that are n cache sizes
apart?

→BIG PROBLEM:
cache effectively smaller

Address Translation Problem

25

1. Color frames according to cache
configuration.

2. Spread each process’ pages across as
many colors as possible.

Solution: Cache Coloring (Page Coloring)

26

• Assignment: where do you put the data?
• Replacement: who do you kick out?

27

Caching

What do you do when memory is full?

• Assignment: where do you put the data?

• Replacement: who do you kick out?

- Random: pros? cons?

- FIFO

- MIN

- LRU

- LFU

- Approximating LRU
28

Caching

• Random: Pick any page to eject at random
• Used mainly for comparison

• FIFO: The page brought in earliest is evicted
• Ignores usage

• OPT: Belady’s algorithm
• Select page not used for longest time

• LRU: Evict page that hasn’t been used for the longest
• Past could be a good predictor of the future

• MRU: Evict the most recently used page
• LFU: Evict least frequently used page

Page Replacement Algorithms

29

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

30

frames
1

1 2

2 1 3

3 2 1 4

3 2 4 1

3 1 4 2

2 1 4 5

2 1 5 1

2 1 5 2

2 1 5 3

2 3 5 4

4 3 5 5

4 3 5

 contents of frames at time of reference

page fault

hit

marks arrival time4

reference

9 page faults

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 4 frames (4 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

31

frames
1

1 2

2 1 3

3 2 1 4

4 3 2 1 1

4 3 2 1 2

4 3 2 1 5

4 3 2 5 1

4 3 1 5 2

4 2 1 5 3

3 2 1 5 4

3 2 3 4 5

3 2 5 4

 contents of frames at time of reference

page fault

hit

marks arrival time4

reference

10 page faults

more frames → more page faults?

Belady’s Anomaly

• Replace page that will not be used for the longest
• 4 frames example

Optimal Algorithm (OPT)

32

1

1 2

2 1 3

3 2 1 4

4 3 2 1 1

4 3 2 1 2

4 3 2 1 5

5 3 2 1 1

5 3 2 1 2

5 3 2 1 3

5 3 2 1 4

5 3 2 4 5

5 3 2 4

6 page faults
Question: How do we tell the future?
Answer: We can’t

OPT used as upper-bound in measuring
how well your algorithm performs

In real life, we do not have access to the
future page request stream of a program
• No crystal ball
• no way to know which pages a program will

access

→ Need to make a best guess at which
pages will not be used for the longest time

OPT Approximation

33

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Least Recently Used (LRU) Algorithm

34

1

1 2

2 1 3

3 2 1 4

4 3 2 1 1

4 3 2 1 2

4 3 2 1 5

4 5 2 1 1

4 5 2 1 2

4 5 2 1 3

3 5 2 1 4

3 4 2 1 5

3 4 2 5

page fault

hit

marks most recent use4

8 page faults

• On reference: Timestamp each page
• On eviction: Scan for oldest frame

Problems:
• Large page lists
• Timestamps are costly

Solution: approximate LRU
Q: “I thought LRU was already an approximation…”
A: “It is... Oh well…”

* the blue shading in the previous frame diagram

Implementing* Perfect LRU

35

Approximating LRU*

• Organize pages in

memory as circular

linked list

• When page is

referenced, set

“used” bit

• Keep a “hand” pointer

to last evicted page

Clock Algorithm: Not Recently Used

36(*yes, LRU was already an approximation…)

0 1 1

1 4 1

2 5 0

3 2 1

4 3 0

Frame Page Used

Approximating LRU*

On Page Fault:

• Check page at “hand”

• Used? Clear use bit,

advance hand, try

again

• Unused? Evict

Clock Algorithm: Not Recently Used

37(*yes, LRU was already an approximation…)

0 1 1

1 4 1

2 5 0

3 2 1

4 3 0

Frame Page Used

Clock Algorithm Problems

What if Memory is Large?

Leading edge clears use bit
• slowly clears history
• finds victim candidates

Trailing edge evicts pages
with use bit set to 0

• fast: original clock algorithm
• slow: all pages look used

Big angle? Small angle?
0 0

0

blue 1’s were used after use
bit was cleared by green hand

evicts 1st use=0
frame it finds

30 1
21 1

12 0

43

54 1

65

0

1

86

7798

MRU: Remove the most recently touched page
• Good for data accessed only once, e.g. a movie file
• Not a good fit for most other data, e.g. frequently

accessed items

LFU: Remove page with lowest usage count
• No record of when the page was referenced
• Use multiple bits. Shift right by 1 at regular intervals.

MFU: remove the most frequently used page

LFU and MFU do not approximate OPT well

Other Algorithms

