Synchronization

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

* Foundations

* Semaphores

 Monitors & Condition
Variables

Producer-Consumer
with locks

char buf[SIZE];
int n=0, tail=0, head=0;
lock 1;
produce(char ch) {
1l.acquire()
while(n == SIZE):
l.release(); l.acquire()
buf[head] = ch;
head = (head+1)%SIZE;
N++;
l.release();

}

char consume() {
1l.acquire()
while(n == 0):
l.release(); l.acquire()
ch = buf[tail];
tail = (tail+1)%SIZE;
n--;
l.release;
return ch;

THOU
SHALT NOT
BUSY-WAIT!

CONCURRENT APPLICATIONS

Locks Semaphores |Condition Variables Monitors

O TSR

Interrupt Disable Atomic R/W Instructions

" HARDWARE
Multiple Processors Hardware Interrupts

Monitors & Condition Variables

 Definition

» Simple Monitor Example

* Implementation

* Classic Sync. Problems with Monitors

- Bounded Buffer Producer-Consumer
- Readers/Writers Problems

- Barrier Synchronization
* Semantics & Semaphore Comparisons
* Classic Mistakes with Monitors

Cornell CIS

Monitor Semantics guarantee mutual exclusion

Only one thread can execute monitor procedure at any time (aka
“in the monitor”)

: can only access shared
in the abstract:

data via a monitor

Monitor monitor_name

{ f le: procedure
/I shared variable declarations orexample.
Monitor bounded_buffer
procedure P1() { {
} int in=0, out=0, nElem=0;
int buffer[N]; t‘oﬂ
d P2 atl
|;r‘oce ure P2() { consume () { one Opef e
} On\y ecu’te al @
procedure PN() { sr‘o uce() |
}
}

initialization code() {

}

Producer-Consumer Revisited

Problems:
1. Unprotected shared state (multiple producers/consumers)

Solved via Monitor.
Only 1 thread allowed in at a time.
* Only one thread can execute monitor procedure at any time
 [f second thread invokes monitor procedure at that time, it will
block and wait for entry to the monitor.
* Ifthread within a monitor blocks, another can enter
2. Inventory:
* Consumer could consume when nothing is there!

* Producer could overwrite not-yet-consumed data!

What about these?
- Enter Condition Variables .

Condition Variables

A mechanism to wait for events

3 operationson Condition Variable x

- x.wait(): sleep until woken up (could wake up
on your own)

* x.signal(): wake at least one process waiting
on condition (if there is one). No history
associated with signal.

 x.broadcast(): wake all processes waiting on
condition

IINOT the same thing as UNIX wait & signal !!

Using Condition Variables

You must hold the monitor lock to call these
operations.

To wait for some condition:
while not some predicate():

CV.wait()
» atomically releases monitor lock & yields processor
 as CV.wait() returns, lock automatically reacquired

When the condition becomes satisfied:
CV.broadcast(): wakesup all threads
CV.signal(): wakesup atleast one thread

10

Condition Variables Live in the Monitor

Abstract Data Type for handling
shared resources, comprising:

1. Shared Private Data
 the resource
 canonly be accessed from in the monitor

2. Procedures operating on data
» gateway to the resource
* canonly act on data local to the monitor

3. Synchronization primitives
» among threads that access the procedures

[Hoare 1974]

Types of Wait Queues

Monitors have two kinds of “wait” queues

* Entry to the monitor: a queue of threads
waiting to obtain mutual exclusion & enter

* Condition variables: each condition
variable has a queue of threads waiting on the
associated condition

RISE AAE R AARERINTALE REATA R kx MM

Kld and Cook Threads

kid main() {

*play_w_legos () «

BK.kid eat()
bathe()

make robots()
BK.kid eat()
facetime_Edward()
facetime_grandma()
BK.kid eat()

Monitor BurgerKing {
Lock mlock

int numburgers = 0
condition hungrykid

kid eat:

with mlock:
while (numburgers==0)

hungrykid.wait()

numburgers -= 1

makeburger:

with mlock:
++numburger
hungrykid.signal()

cook_main() {

$wa;e ()

shower ()
drive to work()
while(not_5pm)

BK.makeburger()
drive to home()
watch_got()
sleep()

}

Monitors & Condition Variables

* Definition

» Simple Monitor Example

* Implementation

* Classic Sync. Problems with Monitors

- Bounded Buffer Producer-Consumer
- Readers/Writers Problems

- Barrier Synchronization
* Semantics & Semaphore Comparisons
* Classic Mistakes with Monitors

Cornell CIS

Language Support

Can be embedded in programming language:
» Compiler adds synchronization code, enforced at
runtime
 Mesa/Cedar from Xerox PARC
 Java: synchronized, wait, notify, notifyall
* C#: lock, wait (with timeouts) , pulse, pulseall
* Python: acquire, release, wait, notify, notifyAll

Monitors easier & safer than semaphores
* Compiler can check
 Lock acquire and release are implicit and cannot
be forgotten

15

Monitors in Python

class BK:
def init (self):
self.lock = Lock()
self.hungrykid = Condition(self.lock)
self.nBurgers= 0

wait hen Ca“ed
: : o releases lock W it returns
e kig_eaiisilfl)(. ° rre—acqu'\res ock when itre
with self.lock:

while self.nBurgers| ==
self.hungrykid.wait()

self.nBurgers = self.nBur‘ger‘s)—wl“cﬁjfig{YAHO
def make_burger(self): Sigﬂdlgst().»»ﬂ

with self.lock: proadc
self.nBurgers = self.nBurgers + 1
self.hungrykid.notify() 16

Producer-Consumer

What if no thread is waiting when
notify() called?

Then signal is a nop.

Very different from calling
V() on a semaphore -
semaphores remember how
many times V() was called!

Monitor Producer_Consumer {

char buf[SIZE];
int n=0, tail=0, head=0;

condition not_empty, not full;

produce(char ch) {
while(n == SIZE):
wait(not full);
buf[head] = ch;
head = (head+1)%SIZE;
N++;
notify(not empty);
}
char consume() {
while(n == 0):
wait(not _empty);
ch = buf[tail];
tail = (tail+1)%SIZE;
n--;
notify(not full);
return ch;

17

Readers and Writers

Monitor ReadersNWriters {

int waitingWriters=0, waitingReaders=0, nReaders=0, nWriters=0;
Condition canRead, canWrite;

void BeginRead()

BeginWrite])
g. g) with monitor.lock:
with monitor.lock: .
. . ++waitingReaders
++waltingWriters

while (nWriters>@ or waitingWriters>9)
canRead.wait();

--waitingReaders

++nReaders

while (nWriters >0 or nReaders >0)
canWrite.wait();

--waitingWriters

nWriters = 1;

EndWrite()
with monitor.lock:
nWriters = 0@
if WaitingWriters > ©
canWrite.signal();
else if waitingReaders > ©
canRead.broadcast();

} s

void EndRead()
with monitor.lock:
--nReaders;
if (nReaders==0 and waitingWriters>0)
canWrite.signal();

Understanding the Solution

A writer can enter if;
* no other active writer

&&
* no active readers

When a writer finishes:
check for waiting writers
Y = lets one enter

N = let all readers enter

A reader can enter if:

* No active writer
&&
* No waiting writers

Last reader finishes:
it lets 1 writer in
(if any)

19

Fair?

*If a writer is active or waiting, readers
queue up

*|f a reader (or another writer) is active,
writers queue up

... gives preference to writers, which is often
what you want

20

Barrier Synchronization

* Important synchronization primitive in high-
performance parallel programs

* nThreads threads divvy up work, run rounds of
computations separated by barriers.

e could fork & wait but
— thread startup costs
— waste of a warm cache

Create n threads & a barrier.

Each thread does roundl()
barrier.checkin()

Each thread does round2()
barrier.checkin()

Checkin with 1 condition variable

self.allCheckedIn = Condition(self.lock)

def checkin():
with self.lock:
nArrived++
if nArrived < nThreads:
while nArrived < nThreads and nArrived > O:
allCheckedIn.wait()
else:
allCheckedIn.broadcast()
nArrived = ©

What’s wrong with this?

Checkin with 2 condition variables

self.allCheckedIn = Condition(self.lock)
self.alllLeaving = Condition(self.lock)

def checkin():

nArrived++
if nArrived < nThreads: // not everyone has checked in
while nArrived < nThreads:
allCheckedIn.wait() // wait for everyone to check in
else:

nLeaving = 0 // this thread is the last to arrive
allCheckedIn.broadcast() // tell everyone we’re all here!

nLeaving++
if nLeaving < nThreads: // not everyone has left yet
while nLeaving < nThreads:
alllLeaving.wait() // wait for everyone to leave
else:
nArrived = 0 // this thread is the last to leave
alllLeaving.broadcast() // tell everyone we’re outta here!
Implementing barriers is not easy.
Solution here uses a “double-turnstile” .

Monitors & Condition Variables

* Definition

» Simple Monitor Example

* Implementation

* Classic Sync. Problems with Monitors

- Bounded Buffer Producer-Consumer
- Readers/Writers Problems

- Barrier Synchronization
 Semantics & Semaphore Comparisons
 Classic Mistakes with Monitors

Cornell

CV semantics: Hansen vs. Hoare

The condition variables we have defined

obey Brinch Hansen (or Mesa) semantics

 signaled thread is moved to ready list, but not
guaranteed to run right away

Hoare proposes an alternative semantics

* signaling thread is suspended and, atomically,
ownership of the lock is passed to one of the
waiting threads, whose execution is
immediately resumed

25

Kid and Cook Threads Revisited

Hoare vs. Mesa semantics

*play_w_legos () «

BK.kid eat()
bathe()

make robots()
BK.kid eat()
facetime_Edward()
facetime_grandma()
BK.kid eat()

Monitor BurgerKing {
Lock mlock

int numburgers = 0
condition hungrykid

kid eat:
with mlock:

while (numburgers==0)

hungrykid.wait()
numburgers -= 1

makeburger:

with mlock:
++numburger
hungrykid.signal()

}

cook_main() {

$wake()

shower ()
drive to work()
while(not_5pm)

BK.makeburger()
drive_to_home()
watch_got()
sleep()

Hoare vs. Mesa/Hansen Semantics

Hoare Semantics: monitor lock transferred
directly from signaling thread to woken up

thread
+ clean semantics, easy to reason about

— not desirable to force signaling thread to give
monitor lock immediately to woken up thread

— confounds scheduling with synchronization,
penalizes threads

Mesa/Hansen Semantics: puts a woken up
thread on the monitor entry queue, but does
not immediately run that thread, or transfer

the monitor lock .

Which is Mesa/Hansen? Which is Hoare?

wikipedia.org

What are the implications?

Hansen/Mesa

signal() and broadcast() are hints

* adding them affects
performance, never safety

Shared state must be checked in
a loop (could have changed)

e robust to spurious wakeups

Simple implementation

* no special code for thread
scheduling or acquiring lock

Used in most systems

Sponsored by a Turing Award
(Butler Lampson)

Hoare

Signaling is atomic with the

resumption of waiting thread

* shared state cannot change
before waiting thread
resumed

Shared state can be checked
using an if statement

Easier to prove liveness
Tricky to implement
Used in most books

Sponsored by a Turing Award
(Tony Hoare)

29

Condition Variables vs. Semaphores

Access to monitor is controlled by a lock. To call wait or
signal, thread must be in monitor (= have lock).

Wait vs. P:

* Semaphore P() blocks thread only if value <1
* wait always blocks & gives up the monitor lock

Signal vs. V: causes waiting thread to wake up
* V() increments = future threads don't wait on P()
* No waiting thread = signal=nop
* Condition variables have no history!

Monitors easier than semaphores

* Lockacquire/release are implicit, cannot be forgotten
* Condition for which threads are waiting explicitly in code

30

Pros of Condition Variables

Condition variables force the actual conditions that a
thread is waiting for to be made explicit in the code
» comparison preceding the “wait()” call concisely
specifies what the thread is waiting for

Condition variables themselves have no state = monitor
must explicitly keep the state that is important for
synchronization

* Thisis agood thing!

31

12 commandments of svncnrnmzatlon

Thou shalt name your synchronization variables |]I‘[I|]EI‘|V.
Thou shalt not violate abstraction boundaries nor try to

change the semantics of synchronization primitives. s
Thou shalt use monitors and condition variables instead of
semaphores whenever possibie. b

Thou shalt not mix semaphores and condition variables.

Thou shait not busy-wait.
All shared state must be protected.

Thou shalt grab the monitor lock upon entry to, and release

|t “I]ﬂn BXit fl'llm a procedure.
R et B g —

12 commandments of svncnrnmzatlon

Honor thy shared data with an invariant, which your code
may assume holds when a lock is successfully acquired and
your code must make true before the lock is released.

d. Thou shalt cover thy naked waits.

10. Thou shalt guard your wait predicates in a while loop. Thou
shalt never guard a wait statement with an if statement. |

1. Thou shalt not spiit predicates.

12. Thou shalt help make the world a better place for the
creator’s mighty synchronization vision.

at)N —

8: Honor Thy Shared State with
an Invariant

Monitor Producer_Consumer {
char buf[SIZE];
. int n=0, tail=0, head=0;
Shared State bU'F, n, tall, head condition not_empty, not_-f:u]_]_;
synchronized produce(char ch) {
while(n == SIZE):

What invariants do we need? wait(not_full);
buf[head] = ch;
o head = (head+1)%SIZE;
0<n<SIZE neae
e 0< head<SIZE notify(not_empty);
. i }
0= tail < SIZE. synchronized char consume() {
e 0 (head - tall) < SIZE while(n == 0):

wait(not_empty);
ch = buf[tail];
tail = (tail+1)%SIZE;

How do we ensure these -
invariants hold before notify(not_full);

. return ch;
releasing the lock? }

9: Cover Thy Naked Waits

while not some predicate():
CV.wait()

What’s wrong with this?
random fnl()

CV.wait() How about this?
random -Fn2() with self.lock:
- a=False

while not a:
self.cv.wait()

a=True .

#10: Guard your wait in a while loop

What is wrong with this?
if not some predicate():
CV.wait()

#11: Thou shalt not split predicates

with lock: What is wrong with this?
while not condA:
condA _cv.wait()
while not condB:
condB_cv.wait()

Better:
with lock:
while not condA or not condB:
if not condA:
condA cv.wait()
if not condB:
condB _cv.wait()

A few more guidelines

* Use consistent structure

* Always hold lock when using a condition
variable

* Never spin in sleep()

38

l
Conclusion: Race Conditions are a big pat! ded

Several ways to handle them
* each hasits own pros and cons

Programming language support simplifies writing
multithreaded applications
* Python condition variables
« Java and C# support at most one condition variable
per object, so are slightly more limited

Some program analysis tools automate checking

* make sure code is using synchronization correctly
 hard part is defining “correct” .

