
Synchronization

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

2

• Foundations
• Semaphores
• Monitors & Condition

Variables

• Definition
• Binary Semaphores
• Counting Semaphores
• Classic Sync. Problems (w/Semaphores)

- Producer-Consumer (w/ a bounded buffer)

- Readers/Writers Problem

• Classic Mistakes with Semaphores

3

Semaphores

Dijkstra introduced in the THE Operating System

Stateful:
• a value (incremented/decremented atomically)
• a queue
• a lock

Interface:
• Init(starting value)
• P (procure): decrement, “consume” or “start using”
• V (vacate): increment, “produce” or “stop using”

No operation to read the value!

What is a Semaphore?

4

[Dijkstra 1962]

Dutch 4410: P = Probeer (‘Try'), V = Verhoog ('Increment', 'Increase by one')

Semantics of P and V

5

P() {
while(n <= 0)

;
n -= 1;

}

V() {
n += 1;

}

P():
• wait until value >0
• when so, decrement

value by 1

V():
• increment value by 1

These are the semantics,

but how can we make this efficient?

(doesn’t this look like a spinlock?!?)

Implementation of P and V

6

P() {
while(n <= 0)

;
n -= 1;

}

V() {
n += 1;

}

P():
• block (sit on Q) til n > 0
• when so, decrement value by 1

V():
• increment value by 1
• resume a thread waiting on Q

(if any)

Okay this looks efficient, but how is this safe?

Implementation of P and V

7

P() {
acquire(&guard);
while(n <= 0) {

waiting.enq(self);
release(&guard);
sleep();
acquire(&guard);

}
n -= 1;
release(&guard);

}

V() {
acquire(&guard);
n += 1;
if(!waiting.empty()) {

wake(waiting.deq());
}
release(&guard);

}

P():
• block (sit on Q) til n > 0
• when so, decrement value by 1

V():
• increment value by 1
• resume a thread waiting on Q

(if any)

This is what TAS locks are

good for!

Semaphore value is either 0 or 1
• Used for mutual exclusion

(semaphore as a more efficient lock)
• Initially 1 in that case

Binary Semaphore

8

S.P()
CriticalSection()
S.V()

S.P()
CriticalSection()
S.V()

T1 T2

Semaphore S
S.init(1)

Example: A simple mutex

Lock.P()
CriticalSection()
Lock.V()

Semaphore Lock
Lock.init(1)

P() {
while(n <= 0)

;
n -= 1;

}

V() {
n += 1;

}

9

Lock.P()
CriticalSection()
Lock.V()

Lock.P()
CriticalSection()
Lock.V()

T1 T2

Sema count can be any integer
• Used for signaling or counting resources
• Typically:

• one thread performs P() to await an event
• another thread performs V() to alert waiting thread

that event has occurred

Counting Semaphores

10

pkt = get_packet()

enqueue(packetq, pkt);
packetarrived.V();

packetarrived.P();
pkt = dequeue(packetq);
print(pkt);

T1 T2

Semaphore packetarrived
packetarrived.init(0)

PrintingThread:ReceivingThread:

• must be initialized!
• keeps state
• reflects the sequence of past operations
• >0 reflects number of future P operations

that will succeed

Not possible to:
• read the count
• grab multiple semaphores at same time
• decrement/increment by more than 1!

Semaphore’s count:

11

2+ threads communicate:

some threads produce data that others consume

Bounded buffer: size —N entries—

Producer process writes data to buffer

• Writes to in and moves rightwards

Consumer process reads data from buffer

• Reads from out and moves rightwards

Producer-Consumer Problem

12

0 N-1

in out

• Pre-processor produces source file for
compiler’s parser

• Data from bar-code reader consumed by device
driver

• File data: computer → printer spooler → line
printer device driver

• Web server produces data consumed by client’s
web browser

• “pipe” (|) in Unix >cat file | sort | more

Producer-Consumer Applications

13

Starter Code: No Protection

14

// add item to buffer
void produce(int item) {
buf[in] = item;
in = (in+1)%N;

}

// remove item
int consume() {
int item = buf[out];
out = (out+1)%N;
return item;

}

Problems:
1. Unprotected shared state (multiple producers/consumers)
2. Inventory:

• Consumer could consume when nothing is there!
• Producer could overwrite not-yet-consumed data!

Shared:

int buf[N];

int in, out;

Part 1: Guard Shared Resources

15

// add item to buffer
void produce(int item)
{
mutex_in.P();
buf[in] = item;
in = (in+1)%N;
mutex_in.V();

}

// remove item
int consume()
{
mutex_out.P();
int item = buf[out];
out = (out+1)%N;
mutex_out.V();
return item;

}

Shared:

int buf[N];

int in = 0, out = 0;

Semaphore mutex_in(1), mutex_out(1);

Part 2: Manage the Inventory

16

void produce(int item)
{

empty.P(); //need space

mutex_in.P();
buf[in] = item;
in = (in+1)%N;
mutex_in.V();
filled.V(); //new item!

}

int consume()
{

filled.P(); //need item

mutex_out.P();
int item = buf[out];
out = (out+1)%N;
mutex_out.V();
empty.V(); //more space!

return item;
}

Shared:
int buf[N];
int in = 0, out = 0;
Semaphore mutex_in(1), mutex_out(1);
Semaphore empty(N), filled(0);

Sanity checks

17

void produce(int item)
{

empty.P(); //need space

mutex_in.P();
buf[in] = item;
in = (in+1)%N;
mutex_in.V();
filled.V(); //new item!

}

int consume()
{

filled.P(); //need item

mutex_out.P();
int item = buf[out];
out = (out+1)%N;
mutex_out.V();
empty.V(); //more space!

return item;
}

Shared:
int buf[N];
int in = 0, out = 0;
Semaphore mutex_in(1), mutex_out(1);
Semaphore empty(N), filled(0);

1. Is there a V for every P?

2. Mutex initialized to 1?

3. Mutex P&V in same thread?

Pros:

• Live & Safe (& Fair)

• No Busy Waiting! (is this true?)

• Scales nicely

Cons:

• Still seems complicated: is it correct?

• Not so readable

• Easy to introduce bugs

Producer-consumer: How did we do?

18

Invariant

19

void produce(int item)
{

empty.P(); //need space

mutex_in.P();
buf[in%N] = item;
in += 1;
mutex_in.V();
filled.V(); //new item!

}

int consume()
{

filled.P(); //need item

mutex_out.P();
int item = buf[out%N];
out += 1;
mutex_out.V();
empty.V(); //more space!

return item;
}

Shared:
int buf[N];
int in = 0, out = 0;
Semaphore mutex_in(1), mutex_out(1);
Semaphore empty(N), filled(0);

0 ≤ in – out ≤ N

Models access to a database: shared data that
some threads read and other threads write

At any time, want to allow:
• multiple concurrent readers —OR—(exclusive)
• only a single writer

Example: making an airline reservation
• Browse flights: web site acts as a reader
• Reserve a seat: web site has to write into database

(to make the reservation)

Readers-Writers Problem

20

[Courtois+ 1971]

N threads share 1 object in memory
• Some write: 1 writer active at a time
• Some read: n readers active simultaneously

Insight: generalizes the critical section concept

Implementation Questions:
1. Writer is active. Combo of readers/writers arrive.

Who should get in next?
2. Writer is waiting. Endless of # of readers come.

Fair for them to become active?

For now: back-and-forth turn-taking:
• If a reader is waiting, readers get in next
• If a writer is waiting, one writer gets in next

Readers-Writers Specifications

21

Readers-Writers Solution

22

void write() {
rw_lock.P();
. . .
/* perform write */
. . .
rw_lock.V();

}

int read()
{

count_mutex.P();
rcount++;
if (rcount == 1)

rw_lock.P();
count_mutex.V();
. . .
/* perform read */
. . .
count_mutex.P();
rcount--;
if (rcount == 0)

rw_lock.V();
count_mutex.V();

}

Shared:
int rcount = 0;
Semaphore count_mutex(1);
Semaphore rw_lock(1);

If there is a writer:
• First reader blocks on rw_lock
• Other readers block on mutex

Once a reader is active, all readers get to go through
• Which reader gets in first?

The last reader to exit signals a writer
• If no writer, then readers can continue

If readers and writers waiting on rw_lock & writer exits
• Who gets to go in first?

Readers-Writers: Understanding the Solution

23

When readers active no writer can enter ✔︎
• Writers wait @ rw_lock.P()

When writer is active nobody can enter ✔︎
• Any other reader or writer will wait (where?)

Back-and-forth isn’t so fair:
• Any number of readers can enter in a row
• Readers can “starve” writers

Fair back-and-forth semaphore solution is tricky!
• Try it! (don’t spend too much time…)

Readers-Writers: Assessing the Solution

24

• Definition
• Binary Semaphores
• Counting Semaphores
• Classic Sync. Problems (w/Semaphores)

- Producer-Consumer (w/ a bounded buffer)

- Readers/Writers Problem

• Classic Mistakes with Semaphores

25

Semaphores

Classic Semaphore Mistakes

26

P(S)
CS
P(S)

I

V(S)
CS
V(S)

P(S)
CS

J

K

P(S)
if(x) return;
CS
V(S)

L

Gets stuck on 2nd P(). Subsequent
processes freeze up on 1st P().

Undermines mutex:
• Doesn’t get permission via P()
• “extra” V()s allow other processes
into the CS inappropriately

Next call to P() will freeze up.
Confusing because the other process
could be correct but hangs when you
use a debugger to look at its state!

Conditional code can change code
flow in the CS. Caused by code

updates (bug fixes, etc.) by someone
other than original author of code.

⬅︎typo

⬅︎typo

⬅︎omission

“During system conception … we used the
semaphores in two completely different ways.
The difference is so marked that, looking back,
one wonders whether it was really fair to present
the two ways as uses of the very same primitives.
On the one hand, we have the semaphores used
for mutual exclusion, on the other hand, the
private semaphores.”

— Dijkstra “The structure of the ‘THE’-Multiprogramming
System” Communications of the ACM v. 11 n. 5 May 1968.

Semaphores Considered Harmful

27

These are “low-level” primitives. Small errors:
• Easily bring system to grinding halt
• Very difficult to debug

Two usage models:
• Mutual exclusion: “real” abstraction is a critical

section
• Communication: threads use semaphores to

communicate (e.g., bounded buffer example)

Simplification: Provide concurrency support in compiler
→ Enter Monitors

Semaphores NOT to the rescue!

28

