
Synchronization

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

2

• Foundations
• Semaphores
• Monitors & Condition

Variables

• Race Conditions
• Critical Sections
• Example: Too Much Milk
• Basic Hardware Primitives
• Building a SpinLock

3

Synchronization Foundations

Process:
• Privilege Level
• Address Space
• Code, Data, Heap
• Shared I/O resources
• One or more Threads:

• Stack
• Registers
• PC, SP

Recall: Process vs. Thread

4

Shared
amongst
threads

2 threads updating a shared variable amount
• One thread wants to decrement amount by $10K
• Other thread wants to decrement amount by 50%

What happens when both threads are running?

Two Theads, One Variable

5

Memory

. . .
amount -= 10,000;

. . .

. . .
amount *= 0.5;

. . .

100,000amount

T1 T2

Might execute like this:

Two Theads, One Variable

6

Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount
r2 = 0.5 * r2
store r2 to amount
. . .

40,000amount

Or vice versa (T1 then T2 → 45,000)…
either way is fine…

T1

T2

Or it might execute like this:

Two Theads, One Variable

7

Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount

. . .

r2 = 0.5 * r2
store r2 to amount
. . .

50,000amount

Lost Update!
Wrong ..and very difficult to debug

T1

T2

= timing dependent error involving shared state
• Once thread A starts, it needs to “race” to finish
• Whether race condition happens depends on

thread schedule

• Different “schedules” or “interleavings” exist

(total order on machine instructions)

All possible interleavings should be
safe!

Race Conditions

8

1. Program execution depends on the possible
interleavings of threads’ access to shared state.

2. Program execution can be nondeterministic.

3. Compilers and processor hardware can reorder
instructions.

Problems with Sequential Reasoning

9

• Number of possible interleavings is huge
• Some interleavings are good
• Some interleavings are bad:

• But bad interleavings may rarely happen!

• Works 100x ≠ no race condition

• Timing dependent: small changes hide bugs

Race Conditions are Hard to Debug

10

• 2 concurrent enqueue() operations?
• 2 concurrent dequeue() operations?

What could possibly go wrong?

Example: Races with Queues

11

tail head

Must be atomic due to shared memory access

Goals
Safety: 1 thread in a critical section at time
Liveness: all threads make it into the CS if desired
Fairness: equal chances of getting into CS

… in practice, fairness rarely guaranteed

Critical Section

12

. . .
CSEnter();
Critical section

CSExit();
. . .

. . .
CSEnter();
Critical section

CSExit();
. . .

T1 T2

13

Too Much Milk:
Safety, Liveness, and Fairness

with no hardware support

2 roommates, fridge always stocked with milk
• fridge is empty → need to restock it
• don’t want to buy too much milk

Caveats
• Only communicate by a notepad on the fridge
• Notepad has cells with names, like variables:

out_to_buy_milk

TASK: Write the pseudo-code to ensure that at
most one roommate goes to buy milk

Too Much Milk Problem

14

0

Solution #1: No Protection

15

if fridge_empty():
buy_milk()

if fridge_empty():
buy_milk()

T1 T2

Safety: Only one person (at most) buys milk
Liveness: If milk is needed, someone eventually
buys it.
Fairness: Roommates equally likely to go to buy
milk.

Safe? Live? Fair?

Solution #2: add a boolean flag

16

while(outtobuymilk):
do_nothing();

if fridge_empty():
outtobuymilk = 1
buy_milk()
outtobuymilk = 0

while(outtobuymilk):
do_nothing();

if fridge_empty():
outtobuymilk = 1
buy_milk()
outtobuymilk = 0

T1 T2

Safety: Only one person (at most) buys milk
Liveness: If milk is needed, someone eventually buys it.
Fairness: Roommates equally likely to go to buy milk.
Safe? Live? Fair?

outtobuymilk initially false

Solution #3: add two boolean flags!

17

blues_got_this = 1
if !reds_got_this and

fridge_empty():
buy_milk()

blues_got_this = 0

reds_got_this = 1
if !blues_got_this and

fridge_empty():
buy_milk()

reds_got_this = 0

T1 T2

one for each roommate (initially false):
blues_got_this, reds_got_this

Safety: Only one person (at most) buys milk
Liveness: If milk is needed, someone eventually buys it.
Fairness: Roommates equally likely to go to buy milk.
Safe? Live? Fair?

Solution #4: asymmetric flags!

18

blues_got_this = 1
while reds_got_this:

do_nothing()
if fridge_empty():

buy_milk()
blues_got_this = 0

reds_got_this = 1
if not blues_got_this:

if fridge_empty():
buy_milk()

reds_got_this = 0

T1 T2

‒ complicated (and this is a simple example!)
‒ hard to ascertain that it is correct
‒ asymmetric code is hard to generalize & unfair

Safe? Live? Fair?

one for each roommate (initially false):
blues_got_this, reds_got_this

Last Solution: Peterson’s Solution

19

blues_got_this = 1
turn = red
while (reds_got_this

and turn==red):
do_nothing()

if fridge_empty():
buy_milk()

blues_got_this = 0

reds_got_this = 1
turn = blue
while (blues_got_this

and turn==blue):
do_nothing()

if fridge_empty():
buy_milk()

reds_got_this = 0

T1 T2

another flag turn {blue, red}

‒ complicated (and this is a simple example!)
‒ hard to ascertain that it is correct
‒ hard to generalize

Safe? Live? Fair?

• HW primitives to provide mutual exclusion
• A machine instruction (part of the ISA!) that:
• Reads & updates a memory location
• Is atomic (other cores can’t see intermediate state)

• Example: Test-And-Set
1 instruction with the following semantics:

sets the value to 1, returns former value

Hardware Solution

20

ATOMIC int TestAndSet(int *var) {
int oldVal = *var;
*var = 1;
return oldVal;

}

Shared variable: int buyingmilk, initially 0

Buying Milk with TAS

21

while(TAS(&buyingmilk))

do_nothing();
if fridge_empty():
buy_milk()

buyingmilk := 0

while(TAS(&buyingmilk))

do_nothing();
if fridge_empty():
buy_milk()

buyingmilk := 0

T1 T2

A little hard on the eyes. Can we do better?

Enter: Locks!

22

acquire(int *lock) {
while(test_and_set(lock))
/* do nothing */;

}

release(int *lock) {
*lock = 0;

}

Shared lock: int buyingmilk, initially 0

Buying Milk with Locks

23

acquire(&buyingmilk);

if fridge_empty():
buy_milk()

release(&buyingmilk);

acquire(&buyingmilk);

if fridge_empty():
buy_milk()

release(&buyingmilk);

T1 T2

Now we’re getting somewhere!
Is anyone not happy with this?

Thou

shalt not

busy-wait!

24

Participants not in critical section must spin
→ wasting CPU cycles

• Replace the “do nothing” loop with a “yield()”?
• Threads would still be scheduled and descheduled

(context switches are expensive)

Need a better primitive:
• allows one thread to pass through
• all others sleep until they can execute again

Not just any locks: SpinLocks

25

