
CPU Scheduling

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

You’re the cook at State Street Diner
• customers continuously enter and place

orders 24 hours a day
• dishes take varying amounts to prepare

What is your goal?
• minimize average latency
• minimize maximum latency
• maximize throughput

Which strategy achieves your goal?

The Problem

2

What if instead you are:

• the owner of an (expensive) container ship
and have cargo across the world

• the head nurse managing the waiting
room of the emergency room

• a student who has to do homework in
various classes, hang out with other
students, eat, and occasionally sleep

Goals depend on context

3

• CPU Scheduler selects a process to run
from the run queue

• Disk Scheduler selects next read/write
operation

• Network Scheduler selects next packet to
send or process

• Page Replacement Scheduler selects
page to evict

We’ll focus on CPU Scheduling

Schedulers in the OS

4

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
- handle device interrupts

• while system calls pending
- handle system calls

• if run queue is non-empty
- select process and switch to it

• otherwise
- wait for device interrupt

}

Kernel Operation (conceptual, simplified)

5

Task/Job
• User request: e.g., mouse click, web request,

shell command, …

Response time (latency, delay): How long?
• User-perceived time to do some task.

Initial waiting time: When do I start?
• User-perceived time before task begins.

Total waiting time: How much thumb-twiddling?

• Time on the run queue but not running.

Terminology Alert!

Performance Terminology

Per Job or Task Metrics

7

Time of
submission

First time
scheduled

Job
Completed

Response Time / Latency / Delay

Initial Waiting Time

Total Waiting Time: sum of “red” periods

Throughput: How many tasks over time?
• The rate at which tasks are completed.

Predictability: How consistent?
• Low variance in response time for repeated

requests.

Overhead: How much extra work?
• Time to switch from one task to another.

Fairness: How equal is performance?
• Equality in the number and timeliness of resources

given to each task.

Starvation: How bad can it get?
• The lack of progress for one task, due to resources

given to a higher priority task.

More Performance Terminology

• Minimizes latency
• Maximizes throughput
• Maximizes utilization:

keeps all devices busy
• Meets deadlines:

think image processing, car brakes, etc.
• Is Fair:

everyone makes progress, no one starves

No such scheduler exists! 

The Perfect Scheduler

9

Non-preemptive
Process runs until it voluntarily yields CPU
• process blocks on an event (e.g., I/O or

synchronization)
• process yields
• process terminates

Preemptive
All of the above, plus:
• Timer and other interrupts
• When processes cannot be trusted to yield
• Incurs some overhead

When does scheduler run?

10

Processes switch between CPU & I/O bursts
CPU-bound jobs: Long CPU bursts

I/O-bound: Short CPU bursts

Problems:
• don’t know job’s type before running
• jobs also change over time

Process Model

11

Matrix multiply

emacsemacs

12

Basic scheduling algorithms:

• First in first out (FIFO)
• Shortest Job First (SJF)
• Round Robin (RR)

Processes P1, P2, P3 with compute time 12, 3, 3

Scenario 1: arrival order P1, P2, P3

Scenario 2: arrival order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3

Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Response Time:

P1P2 P3

183 6Time 0

13

Average Response Time:

(3+6+18)/3 = 9

Note: this is always non-preemptive

FIFO Roundup

14

The Good

The Bad

The Ugly

– Poor avg. response time if
tasks have variable size
– Average response time very
sensitive to arrival time

– Not responsive to
interactive tasks

+ Simple
+ Low-overhead
+ No Starvation
+ Optimal avg. response time if

all tasks same size

Schedule in order of estimated completion† time

Scenario : each job takes as long as its number

Would another schedule improve avg response time?

Shortest Job First (SJF)

Average Response Time:

P5P1 P2

151Time 0

P4P3

3 6 10

†with preemption, remaining time

(1+3+6+10+15)/5 = 7

FIFO vs. SJF

16

Effect on the short jobs is huge.
Effect on the long job is small.

SJF is optimal if we know how long each process will run.
How to approximate duration of next CPU-burst?
• Based on the durations of the past bursts
• Past can be a good predictor of the future

• No need to remember entire past history!

Use exponential average:
tn actual duration of nth CPU burst
n predicted duration of nth CPU burst
n+1 predicted duration of (n+1)th CPU burst

n+1 = n + (1- ) tn

0    1,  determines weight placed on past behavior

Shortest Job First Prediction

17

SJF Roundup

18

The Good

The Bad

The Ugly

– Pessimal variance in
response time

– Needs estimate of
execution time
– Can starve long jobs
– Frequent context switches

+ Optimal average
response time (when jobs
available simultaneously)

• Each process allowed to run for a quantum
• Context is switched (at the latest) at the end of

the quantum

What is a good quantum size?
• Too long, and it morphs into FIFO
• Too short, and much time lost context

switching
• Typical quantum: about 100X cost of context

switch (~100ms vs. << 1 ms)

Round Robin (RR)

Effect of Quantum Choice in RR

20

Assuming no overhead to time slice, is
Round Robin always better than FIFO?

What’s the worst case scenario for Round
Robin?
• What’s the least efficient way you could get

work done this semester using RR?

Round Robin vs FIFO

21

Round Robin vs. FIFO

22

At least it’s fair?

Optimal!

Tasks of same length that start ~same time

Mixture of one I/O Bound tasks + two CPU Bound Tasks
I/O bound: compute, go to disk, repeat
→ RR doesn’t seem so fair after all….

More Problems with Round Robin

23

compute go to disk

wait 190 ms………….

100 ms quanta100 ms quanta

100 ms quanta

compute go to disk

RR Roundup

24

The Good

The Bad

The Ugly

– Overhead of context
switching
– Mix of I/O and CPU bound

– Particularly bad for
simultaneous, equal
length jobs

+ No starvation
+ Can reduce response time
+ Low Initial waiting time

25

Priority-based scheduling algorithms:

• Priority Scheduling
• Multi-level Queue Scheduling
• Multi-level Feedback Queue Scheduling

• Assign a number to each job and
schedule jobs in (increasing) order

• Reduces to SJF if n is used as priority

• To avoid starvation, change job’s priority
with time (aging)

Priority Scheduling

26

Multiple ready queues based on job “type”
• interactive processes
• CPU-bound processes
• batch jobs
• system processes
• student programs

Different queues may be scheduled
using different algorithms

− Queue classification difficult
(Process may have CPU-bound and interactive phases)

− No queue re-classification

Multi-Level Queue Scheduling

27

System

Interactive

Batch

Student

Lowest priority

Highest priority

Multi-Level Feedback Queues
• Like multilevel queue, but

assignments are not static

• Jobs start at the top
• Use your quantum? move down

• Don’t? Stay where you are

Need parameters for:
• Number of queues

• Scheduling alg. per queue

• When to upgrade/downgrade job

28

Lowest priority

Highest priority

Quantum = 2

Quantum = 4

Quantum = 8

RR

• Cook at State Street Diner: how to
minimize the average wait time for food?
(most restaurants use FCFS)

• Nurse in the emergency room

• Student with assignments, friends, and a
need for sleep

Problem Revisited

29

Threads share code & data segments
• Option 1: Ignore this fact
• Option 2: Gang scheduling*
• all threads of a process run together (pink,

green)

• Option 3: Space-based affinity*
• assign tasks to processors (pink → P1, P2)

+ Improve cache hit ratio
• Option 4: Two-level scheduling
• schedule processes, and within each process,

schedule threads
+ Reduce context switching overhead and
improve cache hit ratio

Thread Scheduling

30

t1 t2 t3 t4

t1 t2 t3 t4

P1 P2 P3 P4

t1 t2

t3 t4

t1 t2

t3 t4

P1 P2 P3 P4

*multiprocessor only

Real-time processes have timing constraints
• Expressed as deadlines or rate requirements

Common RT scheduling policies
• Earliest deadline first (EDF) (priority = deadline)
• Task A: I/O (1ms compute + 10 ms I/O), deadline = 12 ms
• Task B: compute, deadline = 10 ms

• Priority Inheritance
• High priority task (needing lock) donates priority to

lower priority task (with lock)

Real-Time Scheduling

31

