
Architectural Support
for Operating Systems

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

How and when does CPU read keycode?

Keyboard Design Again

2

+

3-bit

encoder

(4 to 3)

4-bit

encoder

(16 to 4)
not all 16 wires are shown

CPU

L
a
tc

h

…

Programmed I/O
• CPU has dedicated, special instructions
• CPU has additional wires (I/O bus)
• Instruction specifies device and operation

Memory-mapped I/O
• Device communication goes over

memory bus
• Reads/Writes to special addresses

converted into I/O operations by
dedicated device hardware

• Each device appears as if it is part of the
memory address space

• Predominant device interfacing
technique

Device Interfacing Techniques

3

CPU

Screen

Mouse

KB M
e

m
o

ry

I/O
Bus

Memory
Bus

• First idea: CPU constantly reads the keyboard
latch memory location to see if a key is pressed
= Polling

• Inefficient

• Alternative: add extra circuitry so keyboard can
alert CPU when there is a keypress
= interrupt driven I/O
→ CPU and devices can perform tasks
concurrently, increasing throughput

- Only need a bit of circuitry + a few extra wires to
implement “alert” operation

Polling vs. Interrupts

4

Interrupt controllers manage interrupts

• Interrupts have descriptor of interrupting device

• Priority selector circuit examines all interrupting
devices, reports highest level to the CPU

• Interrupt controller implements interrupt priorities

Interrupts can be maskable (can be turned off by the
CPU for critical processing) or nonmaskable (signifies
serious errors like power out warning, unrecoverable
memory error, etc.)

Interrupt Management

5

CPU
interrupt

controllerinterrupt

Interrupt-driven operation with memory-mapped I/O:
• CPU initiates device operation (e.g., read from disk):

writes an operation descriptor to a designated
memory location

• CPU continues its regular computation
• The device asynchronously performs the operation
• When the operation is complete, interrupts the CPU

What about bulk data transfers?
• One interrupt for each byte read!

I/O Summary

6

Interrupt-Driven I/O: Device → CPU → RAM
for (i = 1 .. n)
• CPU issues read request
• Device interrupts CPU with data
• CPU writes data to memory

+ Direct Memory Access: Device → RAM
• CPU sets up DMA request
• for (i = 1 ... n)

Device puts data on bus
& RAM accepts it

• Device interrupts CPU after done

Critical for high-performance devices

Direct Memory Access (DMA)

CPU RAM

DISK

CPU RAM

DISK

7

• CPU can talk to devices, now what?
Remaining problems:
• What to do while waiting for I/O?
→ Run another program

• How to decide which program to run?
• How do multiple programs share devices?

• Interrupt design assumes there’s only one program

Enter the OS
• Manages shared hardware
• Isolates programs from each other

Still More to Do

8

Let’s start at the very beginning

9

When does life begin?

10

In the BIOS! ROM technology
(non-volatile)

Basic Input/Output System

http://www.partesdeunacomputadora.net/motherboard/que-es-la-bio

Where

On System Start Up

11

DISK

bootloader

OS kernel

startup app

time

• BIOS copies bootloader into memory
• Bootloader copies OS kernel into memory
• Kernel:
• Initializes data structures (devices, core

map, interrupt vector table, etc.)
• Copies first process from disk
• Change privilege mode & PC

PC has

code from:

privilege mode: 0 0 0 1

One Brain, Many Personalities

12
https://www.theodysseyonline.com/are-our-apps-wasting-our-time

time

1. Privilege mode bit (0=kernel, 1=user)
Where? x86 → EFLAGS reg., MIPS →status reg.

2. Privileged instructions
user mode → no way to execute unsafe insns

3. Memory protection
user mode →memory accesses outside a
process’ memory region are prohibited

4. Timer interrupts
kernel must be able to periodically regain
control from running process

5. Efficient mechanism for switching modes
must be fast because it happens a lot!

Supporting dual mode operation

13

• Some processor functionality cannot be
made accessible to untrusted user apps

• Must differentiate user apps vs. OS code

Solution: Privilege mode bit indicates if
current program can perform privileged
operations

0 = Trusted = OS
1 = Untrusted = user

Privilege Mode Bit

14

Examples:
• changing the privilege mode
• writing to certain registers (page table base reg)
• enabling a co-processor
• changing memory access permissions
• signal other users’ processes
• print character to screen
• send a packet on the network
• allocate a new page in memory

CPU knows which instructions are privileged:
insn==privileged && mode==1 → Exception!

Privileged Instructions

15

achieved via
system call

Step 1: Virtualize Memory
• Virtual address space: set of memory

addresses that process can “touch”
(CPU works with virtual addresses)

• Physical address space: set of memory
addresses supported by hardware

Step 2: Address Translation
• function mapping <pid, vAddr> → <pAddr>

Sit tight. We’ll talk all about this later.

Memory Protection

16

1. Privilege bit

2. Privileged instructions

3. Memory protection

4. Timer interrupts

5. Efficient mechanism for switching modes

Supporting dual mode operation

17

Timer Interrupts:
• Hardware timer set to expire after specified

delay (time or instructions)
• Time’s up? Control passes back to kernel.

More Generally: Hardware Interrupts
• External Event has happened – like device I/O
• OS needs to check it out.
• Process stops what it’s doing, invokes OS,

which handles the interrupt.

Interrupts

18

time

Interrupt controller is “owned” by the OS

• All interrupts are handled by kernel code

• Registering an interrupt handler is privileged instr

A timer interrupt is just another device, ensures OS gets
control back at regular intervals via interrupt handler

Interrupt Management
with an OS

19

CPU
interrupt

controllerinterrupt

1. Privilege bit

2. Privileged instructions

3. Memory protection

4. Timer interrupts

5. Efficient mechanism for switching modes

Supporting dual mode operation

20

From User to Kernel

21

Exceptions
• Synchronous
• User program mis-steps (e.g., div-by-zero)
• Attempt to perform privileged insn

• on purpose? breakpoints!

Interrupts

• Asynchronous
• HW device requires OS service

• timer, I/O device, interprocessor

System Calls

• Synchronous
• User program requests OS service

From Kernel to User

22

Resume P after exception,
interrupt or syscall

• Restore PC SP, registers
• Restore mode

If new process

• Copy in program memory
• Set PC & SP
• Toggle mode

Switch to different
process Q

• Load PC, SP, and
registers from Q’s PCB

• Toggle mode

Common sequences of instructions to
cross boundary, which provide:
• Limited entry

- entry point in the kernel set up by kernel

• Atomic changes to process state

- PC, SP, memory protection, mode

• Transparent restartable execution

- user program must be restarted exactly as it was
before kernel got control

Safely switching modes

23

Hardware identifies why
boundary is crossed

• System call?
• interrupt (which device)?
• exception?

• Hardware selects entry
from interrupt vector

• Appropriate handler is
invoked

Interrupt Vector

24

0
handleDivByZero() {
...
}

255

Interrupt Vector
(register)

Interrupt Vector

handleSysCall() {
...
}

handleTimerInt() {
...
}

Privileged hw reg. points to Interrupt Stack
• on switch, hw pushes some process registers

(SP, PC, …) on interrupt stack before

handler runs. (Why?)

• handler pushes the rest

• on return, do the reverse

Why not use user-level stack?
• reliability

• Security

One interrupt stack per process

Interrupt Stack

25

Stack

Data

Insn

Interrupt

Stack S
ys

te
m

re

se
rv

ed

Interrupt Stack
(register)

Hardware transfer to kernel:
1. save privilege mode, set mode to 0
2. mask interrupts
3. save: SP, PC
4. switches SP to the kernel stack
5. save values from #3 onto kernel stack
6. save error code
7. set PC to the interrupt vector table

Interrupt handler
1. saves all registers
2. examines the cause
3. performs operation required
4. restores all registers

Performs “Return from Interrupt” insn (maybe)
• restores the privilege mode, SP and PC

Complete Mode Transfer

26

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
- handle device interrupts

• while system calls pending
- handle system calls

• if run queue is non-empty
- select a runnable process and switch to it

• otherwise
- wait for device interrupt

}

Kernel Operation (conceptual, simplified)

27

1. Privilege bit

2. Privileged instructions

3. Memory protection

4. Timer interrupts

5. Efficient mechanism for switching modes

Made possible (and fast) by hardware!

Supporting dual mode operation

28

