
Introduction
CS 4410

Operating Systems

Summer 2019

Edward Tremel

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

Course
Logistics

2

• University is officially closed today
• Tomorrow is also a “break” day
• Summer session classes must meet

anyway (on both days)

Happy Independence Day!

3

• PhD student in Computer Science
• About to graduate
• Previously: Brown class of 2013
• Research: distributed systems,

datacenter networking, data privacy
• Advised by Prof. Ken Birman

Who am I?

4

• Every day, 11:30-12:45, in Gates G01

• Policies:
• Sit near the front – this classroom is too big
• No cell phones or laptops out during class
• Studies show that classrooms without laptops

are far more effective

• Please ask questions!
• Small class, time for everyone to participate

Class Setup

5

Website: http://www.cs.cornell.edu/courses/cs4410/
• Contains schedule, syllabus, links
• Lecture slides will be posted here

CMS: https://cmsx.cs.cornell.edu
• Assignments and due dates
• Submission and grades

Piazza: https://piazza.com/cornell/summer2019/cs4410
• Announcements by the instructor
• Ask and answer questions

Important Information

6

Office Hours
• MWF 1-2 pm, T/Th 2-3 pm
• Gates 445

Piazza
• For help with assignments, concepts
• Private posts for communicating with just the

instructor

Please no emails to personal email accounts

Getting Help

7

Homework (5)
• Due each Monday before class (except Jul 8)
• Mix of written and programming problems

Quizzes (5)
• In-class quizzes, one each Wednesday

Grade Weights
• Homework: 45%
• Quizzes: 25%
• Final: 25%
• Class Participation: 5%

Assignments and Grades

8

Closed-book exams, no calculators/phones

All submitted work must be your own
• OK to discuss concepts together
• Don’t share or copy solutions
• Don’t look up solutions to similar problems
• Don’t copy course materials

Academic Integrity

9

Introduction to
Operating
Systems

• Software that manages a computer’s
resources

• Makes it easier to write the applications
you want to write

• Makes you want to use the applications
you wrote by running them efficiently

Meet the OS

11

An Operating System implements a virtual
machine whose interface is more convenient*
than the raw hardware interface

* easier to use, simpler to code, more reliable, more secure...

“All the code you did not write”

What is an OS?

12

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical
Machine
Interface

Referee
• Manages shared resources: CPU, memory,

disks, networks, displays, cameras, etc.

Illusionist
• Look! Infinite memory! Your own private

processor!

Glue
• Offers set of common services (e.g., UI routines)

• Separates apps from I/O devices

OS Wears Many Hats

13

OS as Referee

14

Resource allocation
• Multiple concurrent tasks, how does OS

decide who gets how much?
Isolation
• A faulty app should not disrupt other apps

or OS
• OS must export less than full power of

underlying hardware
Communication/Coordination
• Apps need to coordinate and share state

OS as Illusionist (1)

15

Illusion of resources not physically present
Virtualization:
• processor, memory, screen space, disk, network
• the entire computer:
• fooling the illusionist itself!
• ease of debugging, portability, isolation

Operating System (VMM)

App

Hardware

Virtual
Machine
Interface

App Guest OS Guest OS

App App

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical
Machine
Interface

Illusion of resources not physically present
• Atomic operations
• HW guarantees atomicity at word level

- what happens during concurrent updates to
complex data structures?

- what if computer crashes during a block write?

• At the hardware level, packets are lost…

• Reliable communication channels

OS as Illusionist (2)

16

OS as Glue

17

Offers standard services to simplify app
design and facilitate sharing
• send/receive of byte streams
• read/write files
• pass messages
• share memory
• UI

Decouples HW and app development

A Short History of

Operating Systems

18

History of Operating Systems

Phase 1: Hardware expensive, humans cheap

User at console: single-user systems

Batching systems

Multi-programming systems

19

Hand programmed

machines (1945-1955)

Single user systems

OS =

loader + libraries

Problem:

low utilization of

expensive components

20

Batch Processing

(1955-1965)

OS = loader +

sequencer +

output processor

Tape

Input

PrinterOperating System

“System Software”

User Program

User Data

Output

Compute

Tape

Card
Reader

21

Multiprogramming

(1965-1980)

Keep several jobs in memory

Multiplex CPU between jobs.

Operating System

“System Software”

User Program 1

User Program 2

User Program n

system call Read(var)
begin

StartIO(input device)
WaitIO(interrupt)
EndIO(input device)
...

end Read

program P
begin

...
Read(var)
...

end P

22

Multiprogramming

(1965-1980)

Keep several jobs in memory

Multiplex CPU between jobs.

Operating System

“System Software”

User Program 1

User Program 2

User Program n

Process 1 I/O Device

k: read()

k+1:

endio()
interrupt

main{

}

OS

read{

startIO()

waitIO()

23

Multiprogramming

(1965-1980)

Keep several jobs in memory

Multiplex CPU between jobs.

Operating System

“System Software”

User Program 1

User Program 2

User Program n

Process 1 I/O Device

k: read()

k+1:

endio{
interrupt

main{

}

OS

read{

startIO()

schedule()

Process 2

main{
}

schedule()

24

History of Operating Systems

Phase 1: Hardware expensive, humans cheap

User at console: single-user systems

Batching systems

Multi-programming systems

Phase 2: Hardware cheap, humans expensive

Timesharing: Users use cheap terminals and

share CPU

25

Timesharing

(1970-)

Timer interrupt used to multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2

User Program n

Process 1

k:

k+1:

main{

OS

schedule(){

Process 2

main{
}

timer
interrupt

timer
interrupt

schedule(){

}

schedule(){

}

timer
interrupt

26

History of Operating Systems

Phase 1: Hardware expensive, humans cheap

User at console: single-user systems

Batching systems

Multi-programming systems

Phase 2: Hardware cheap, humans expensive

Timesharing: Users use cheap terminals and

share CPU

Phase 3: H/W very cheap, humans very expensive

Personal computing: One system per user

Distributed computing: many systems per user

Ubiquitous computing: LOTS of systems per user
27

Operating Systems for

PCs

Personal computing
systems

Single user

Utilization no longer a
concern

Emphasis on user
interface and API

Evolution

Initially: OS as a simple
service provider (libraries)

Now: Multi-application
with support for
coordination

28

THE END

29

To Learn:
• How to manage complexity through

appropriate abstractions
- infinite CPU, infinite memory, files, locks, etc.

• About design
• performance vs. robustness, functionality

vs. simplicity, HW vs. SW, etc.

• How computers work

Because OSs are everywhere!

Why Study Operating Systems?

30

31

Where’s the OS?
Las Vegas

32

Where’s the OS?
New York

33

34

35

• The world is increasingly dependent on
computer systems
- Connected, networked, interlinked

• There is huge demand for people who
deeply understand and can build robust
systems (most people don’t and can’t)

• OS is a great example of a complex
system that must be robust

System Building is Hard

36

• Structure: how is the OS organized?

• Concurrency: how are parallel activities

created and controlled?

• Sharing: how are resources shared?

• Naming: how are resources named by users?

• Protection: how are distrusting parties

protected from each other?

• Security: how to authenticate, authorize, and

ensure privacy?

• Performance: how to make it fast?

Issues in OS Design

37

• Reliability: how do we deal with failures??

• Portability: how to write once, run anywhere?

• Extensibility: how do we add new features?

• Communication: how do we exchange

information?

• Scale: what happens as demands increase?

• Persistence: how do we make information

outlast the processes that created it?

• Accounting: who pays the bill and how do we

control resource usage?

More Issues in OS Design

38

Ostensibly, operating systems
• architecting complex software
• identifying needs and priorities
• separating concerns
• implementing artifacts with desired properties

In reality, software design principles
• OSes happen to illustrate organizational

principles and design patterns

What’s this course about?

39

• Devices and Architecture
• Processes and Threads
• Scheduling and Synchronization
• Writing correct multithreaded programs

• Memory management
• Filesystems and storage
• Networking
• Security

Topics (OS components)

40

Activity: Keyboard Design

41

• Logic gates

• Switches for keys

• Tri-state buffers

• Encoders, multiplexers, latches…

Simple “Soviet-Era” keyboard
• Only 1 key pressed at a time
• CPU just needs to know which key

Keyboard Components

42

?

