Introduction

CS 4410
Operating Systems
Summer 2019
Edward Tremel

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

COMPUTING AND INFORMATION SCIENCE

Course
Logistics

EE
~

Happy Independence Day!

 University is officially closed today

* Tomorrow is also a “break” day

e Summer session classes must meet
anyway (on both days)

Who am |?

* PhD student in Computer Science
* About to graduate
* Previously: Brown class of 2013
» Research: distributed systems, €%

datacenter networking, data privacy
* Advised by Prof. Ken Birman

Class Setup
* Every day, 11:30-12:45, in Gates GO1

* Policies:
 Sit near the front - this classroom is too big
* No cell phones or laptops out during class
» Studies show that classrooms without laptops

are far more effective @
* Please ask questions!

* Small class, time for everyone to participate

Important Information

We bSite: http://www.cs.cornell.edu/courses/cs4410/

* Contains schedule, syllabus, links
 Lecture slides will be posted here

CMS: https://cmsx.cs.cornell.edu

* Assignments and due dates
* Submission and grades

Plazza: https://piazza.com/cornell/summer2019/cs4410

* Announcements by the instructor
* Ask and answer questions

Getting Help

Office Hours
e MWF 1-2 pm, T/Th 2-3 pm
e Gates 445

Piazza

* For help with assignments, concepts

* Private posts for communicating with just the
Instructor

Please no emails to personal email accounts

Assignments and Grades

Homework (5)

* Due each Monday before class (except Jul 8)

* Mix of written and programming problems
Quizzes (5)

* In-class quizzes, one each Wednesday
Grade Weights

* Homework: 45%

* Quizzes: 25%

* Final: 25%

* Class Participation: 5%

Academic Integrity
Closed-book exams, no calculators/phones

All submitted work must be your own
* OKto discuss concepts together
* Don’t share or copy solutions
* Don’t look up solutions to similar problems
* Don’t copy course materials

Introduction to
Operating
Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Meet the OS

 Software that manages a computer’s
resources

* Makes it easier to write the applications
you want to write

* Makes you want to use the applications
you wrote by running them efficiently

11

Whatis an OS?

An Operating System implements a virtual
machine whose interface is more convenient*
than the raw hardware interface

OS Interface g e P
Physical Operating System

Machine

Interface Hardware

* easier to use, simpler to code, more reliable, more secure...

“All the code you did not write” .

OS Wears Many Hats

$
Referee m

* Manages shared resources: CPU, memory,
disks, networks, displays, cameras, etc.

Illusionist
* Look! Infinite memory! Your own private
processor!

Glue

» Offers set of common services (e.g., Ul routines)
» Separates apps from |/O devices .

OS as Referee @
Resource allocation

* Multiple concurrent tasks, how does OS
decide who gets how much?

Isolation

 Afaulty app should not disrupt other apps
or OS

* OS must export less than full power of
underlying hardware

Communication/Coordination

* Apps need to coordinate and share state

OS as Illusionist (1)

Illusion of resources not physically present

Virtualization:

* processor, memory, screen space, disk, network
* the entire computer:

* fooling theillusionist itself!

* ease of debugging, portability, isolation

0S Interface _———
Physical Operating System
Maching e e e e e e s s sasss LSS ——
Hardware .

Interface

OS as Illlusionist (2) ﬁ

Illusion of resources not physically present

* Atomic operations
 HW guarantees atomicity at word level

- what happens during concurrent updates to
complex data structures?

- what if computer crashes during a block write?
* At the hardware level, packets are lost...

* Reliable communication channels

16

OS as Glue '

Offers standard services to simplify app

design and facilitate sharing
* send/receive of byte streams
* read/write files
* pass messages
* share memory
« Ul

Decouples HW and app development

; A Short History of
Operatmg Systems

XS 2L

History of Operating Systems

Phase 1: Hardware expensive, humans cheap
User at console: single-user systems
Batching systems
Multi-programming systems

19

HAND PROGRAMMED
MACHINES (1945-1955)

Single user systems

0S =
loader + libraries

Problem:

low utilization of
expensive components

BATCH PROCESSING|_

(1955-1965)

OS = loader +
sequencer +
INPUT output processor

Card
Reader

COMPUTE

JL

N T
Tape

User Program

“System Software”

Operating System

Printer

OUTPUT

21

MULTIPROGRAMMING
(1965-1980)

B Keep several jobs in memory
B Multiplex CPU between jobs.

program P
begin

User Program n \ Read(var)

end P

\ system call Read(var)
begin

\ StartIO(input device)

\ WaitIO(interrupt)

EndIO(input device)
Operating System \

end Read

MULTIPROGRAMMING
(1965-1980)

Keep several jobs in memory

Multiplex CPU between jobs.
Process 1 0OS |/O Device

main {

User Program n

k: read ()= read{

startIO() — —m — |
User Program 2 waitIO() ————
User Program 1 ————
“System Software” endio ()
’ interrupt
Operating System P

k+1:

\)

3

MULTIPROGRAMMING
(1965-1980)

B Keep several jobs in memory

B Multiplex CPU between jobs.
Process 1 OS Process2 |[I/O Device

main {

User Program n

k: read ()= read{

startIO() — —m — |
User Program 2 schedule ()» main{ —
User Program 1 ——— ——
“System Software” endio {< E—
interrupt

Operating System

I+ <« schedule ()

—
(\O)

4

History of Operating Systems

Phase 1: Hardware expensive, humans cheap
User at console: single-user systems
Batching systems
Multi-programming systems

Phase 2: Hardware cheap, humans expensive

Timesharing: Users use cheap terminals and
share CPU

25

TIMESHARING
(1970

B Timer interrupt used to multiplex CPU between jobs
Process 1 (ON) Process 2

main {

—p schedule () {
timer

interrupt 3

User Program n \

» Main {
timer
Interrupt

User Program 2 schedulg () {
User Program 1 3

“System Software”

—— schedule) |

Operating syste |
> g2y Interrupt

<

} 26

History of Operating Systems

Phase 1: Hardware expensive, humans cheap
User at console: single-user systems
Batching systems
Multi-programming systems

Phase 2: Hardware cheap, humans expensive

Timesharing: Users use cheap terminals and
share CPU

Phase 3: H/W very cheap, humans very expensive
Personal computing: One system per user
Distributed computing: many systems per user
Ubiquitous computing: LOTS of systems per usei

OPERATING SYSTEMS FOR
PCs

Personal computing
systems

Single user

Utilization no longer a
concern

Emphasis on user
interface and API

Evolution

Initially: OS as a simple
service provider (libraries)

Now: Multi-application
with support for
coordination

28

29

A

Why Study Operating Systems?
To Learn:

* How to manage complexity through

appropriate abstractions
- infinite CPU, infinite memory, files, locks, etc.

* About design

« performance vs. robustness, functionality
vs. simplicity, HW vs. SW, etc.

 How computers work

Because OSs are everywhere!

Mm.azgﬂ ne—_ e mere

i\‘

i pee—— o —reetmmewg W
Where’s the OS?

Las Vegas

?m

4HH

Where’s the OS?
New York

Firse cime yYou've 3
omputer, v this scr

Propar 1y 11.;ra]led.
software manufacturer
ont 1nue, 3able or romove any newly installed hardware
Tware. pizable Bros memor opTions such as Caching or :haf!owirn_).
need to use afe mode vo remove or disable Component s
put er, Press r§ ro selecy Advanced sfarrup opt fons,
a¥e mode.
",.“A_rm‘r fon:

« Fe@starcy
and then

VWUVOOED ¢ Ox82r

30030, 0 -'.'OUOOQUG. Ox Ououuuuu. Ox00000

CL0)

33

partr e,
CARANMOY ORI T
e sl

—

A nr Aahlem ia> een
ro vour —ompuTer.
MACHI NE_CHECHK _EXCEPTION

2N this % o
v

the first
computer.,

sour i :
\ appears

any new hardware or sofr
nstallation 3« 3 >0TTware
ation, ask your hardwar

you mjr_lht nead Jdware

pr oblems
software.
need

-~

R0 s
. B v

“Ae)

:.: “ = =

System Building is Hard

* The world is increasingly dependent on

computer systems
- Connected, networked, interlinked

* There is huge demand for people who
deeply understand and can build robust
systems (most people don’t and can’t)

* OSis a great example of a complex
system that must be robust

36

Issues in OS Design

* Structure: how is the OS organized?

* Concurrency: how are parallel activities
created and controlled?

» Sharing: how are resources shared?

* Naming: how are resources nhamed by users?

* Protection: how are distrusting parties
protected from each other?

* Security: how to authenticate, authorize, and
ensure privacy?

* Performance: how to make it fast?

37

More Issues in OS Design

Reliability: how do we deal with failures??
Portability: how to write once, run anywhere?
Extensibility: how do we add new features?
Communication: how do we exchange
information?

Scale: what happens as demands increase?
Persistence: how do we make information
outlast the processes that created it?

* Accounting: who pays the bill and how do we

control resource usage?

38

What’s this course about?

Ostensibly, operating systems
* architecting complex software
* identifying needs and priorities
* separating concerns
* implementing artifacts with desired properties

In reality, software design principles
* OSes happen to illustrate organizational
principles and design patterns

39

Topics (OS components)

* Devices and Architecture
* Processes and Threads

» Scheduling and Synchronization
» Writing correct multithreaded programs

* Memory management

* Filesystems and storage
* Networking

* Security

40

Activity: Keyboard Design

Cornell CIS

Keyboard Components

» Logic gates —)—

* Switches for keys ? o

e Tri-state buffers 4»

* Encoders, multiplexers, latches...

Simple “Soviet-Era” keyboard
* Only 1 key pressed at a time
* CPU just needs to know which key

42

