CS 4410 Operating Systems

Networking: Routing Algorithms

Summer 2016
Cornell University

Today

- Dijkstra's algorithm
- Distance-Vector (DV) algorithm
- Hierarchical Routing

- Resources:
 - http://www-net.cs.umass.edu/kurose-ross-ppt-6e/
 - Computer Networking: A Top-Down Approach
 J.F. Kurose and K.W. Ross

The routing problem

- A host is usually attached directly to one router: default router.
- Source router: default router of the source host.
- Destination router: default router of the destination host.
- Target: route a packet from source router to destination router.
 - Given a set of routers connected with links, a routing algorithm finds a "good" path from source router to destination router.
 - "good" is usually "low cost" (e.g., length, speed, money).

Least-cost path

- A graph G is used to formulate routing problems.
- G=(N,E)
 - N: nodes that represent routers
 - E: edges that represent physical links
- Each edge has a value representing its cost.
- Find a path between the source and destination that has least cost.

Dijkstra's algorithm

- Compute the least-cost path from one node to all other nodes in the network.
- Iterative algorithm.
 - After the kth iteration, the least-cost paths for k destination nodes are found.
- D(v): cost of the least-cost path from source node to destination v
- p(v): previous node of v along the least-cost path from source.
- N': set of nodes to which the least-cost path is found.

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x		2,x	∞

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,x		2,x	∞
2	uxy	2,u	3 <i>,</i> y			4 ,y

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x		2,x	∞
	2	uxy	2,u	3,y			4,y
	3	uxyv		3,y			4,y

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x		2,x	∞
	2	uxy	2,u	3,y			4,y
	3	uxyv		3,y			4,y
	4	uxyvw					4,y
	5	UXVVW7					

Resulting shortest-path tree from u:

Resulting forwarding table in u:

Destination	Link		
V	(u,v)		
X	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

Dijkstra's algorithm

- Global routing algorithm:
 - It takes the connectivity between all nodes and all link costs as inputs.
 - Source u needs to have global knowledge of the network in order to determine its forwarding table.

Distance-Vector (DV) algorithm

- Decentralized algorithm:
 - No node has complete information about the costs of all links.
 - Each node begins with only the knowledge of the costs of its own directly attached links.
 - Then, each node gradually calculates the leastcost path to a destination by exchanging information with its neighboring nodes.

DV algorithm

- Each node x begins with an estimate $D_x(y)$ of the cost of the least-cost path from itself to y, for all nodes.
 - Distance vector of x: $D_x = [D_x(y): y \in N]$
- Node x knows the cost c(x,v) for each neighbor v.
- Neighbors exchange their distance vectors.
- When x receives v's distance vector, it uses Bellman-Ford equation to update its own distance vector:
 - $-D_x(y) = \min_v \{c(x,v) + D_v(y)\}\$ for each node $y \in N$
- If x's distance vector changed, x sends its distance vector to its neighbors.
- If nodes continue exchanging updated distance vectors, each cost estimate $D_x(y)$ will converge to the actual least-cost from x to y.

Hierarchical Routing

- As the number of routers become large, the overhead involved in maintaining routing information becomes prohibitive.
- Internet providers want to manage their network as they wish, while still being able to connect to other networks.
- Organizing routers into autonomous systems
 (ASs) solve these problems.

Hierarchical Routing

- Routers within the same AS all run the same routing algorithm (e.g., Dijkstra or DV).
 - Intra-AS routing protocol
- One or more routers in an AS are responsible to forward packets to destinations outside AS.
 - Gateway routers

Hierarchical Routing

- How to route packets outside an AS?
- Inter-AS routing protocol:
 - Obtain reachability information from neighboring ASs, and
 - Propagate the reachability information to all routers in AS.
- In the Internet, all ASs run the same inter-AS routing protocol: BGP (Border Gateway Protocol)
 - Uses a DV-like algorithm.

Today

- Dijkstra's algorithm
- Distance-Vector (DV) algorithm
- Hierarchical Routing

- Resources:
 - http://www-net.cs.umass.edu/kurose-ross-ppt-6e/
 - Computer Networking: A Top-Down Approach
 J.F. Kurose and K.W. Ross

Coming up...

- Next lecture: Transport layer
- HW5:
 - Released today
 - Due on Wednesday